cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279453 Triangle read by rows: T(n, k) is the number of nonequivalent ways to place k points on an n X n square grid so that no more than 2 points are on a vertical or horizontal straight line.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 3, 8, 14, 17, 9, 2, 1, 3, 21, 73, 202, 306, 285, 115, 20, 1, 6, 49, 301, 1397, 4361, 9110, 11810, 8679, 2929, 288, 1, 6, 93, 890, 6582, 34059, 126396, 326190, 568134, 624875, 390426, 111798, 8791, 1, 10, 171, 2321, 24185, 185181, 1055025
Offset: 1

Views

Author

Heinrich Ludwig, Dec 17 2016

Keywords

Comments

Length of n-th row is A272651(n) + 1, where A272651(n) is the maximal number of points that can be placed under the condition mentioned.
Rotations and reflections of placements are not counted. If they are to be counted, see A279445.
For condition "no more than 2 points on a straight line at any angle", see A235453.

Examples

			The table begins with T(1, 0):
1 1
1 1  2   1    1
1 3  8  14   17    9    2
1 3 21  73  202  306  285   115   20
1 6 49 301 1397 4361 9110 11810 8679 2929 288
...
T(4, 3) = 73 because there are 73 nonequivalent ways to place 3 points on a 4 X 4 square grid so that no more than 2 points are on a vertical or horizontal straight line.
		

Crossrefs

Row sums give A279454.
Diagonal T(n, n) is A279452.