cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A279460 Number of n X 2 0..1 arrays with no element equal to a strict majority of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

0, 2, 6, 20, 66, 210, 658, 2036, 6236, 18928, 57032, 170790, 508748, 1508462, 4454576, 13107640, 38446722, 112448726, 328044512, 954771282, 2772970950, 8038036642, 23258558892, 67190053760, 193807573324, 558249440024, 1605908314802
Offset: 1

Views

Author

R. H. Hardin, Dec 12 2016

Keywords

Examples

			Some solutions for n=4:
..0..1. .0..0. .0..1. .0..0. .0..1. .0..1. .0..1. .0..0. .0..0. .0..0
..0..0. .1..0. .0..0. .1..1. .0..1. .1..0. .1..0. .1..0. .1..0. .1..0
..1..0. .1..0. .0..1. .0..1. .0..1. .0..1. .1..0. .0..1. .0..1. .1..1
..1..1. .1..0. .1..0. .0..0. .0..0. .0..0. .1..1. .0..1. .1..0. .0..0
		

Crossrefs

Column 2 of A279466.

Formula

Empirical: a(n) = 4*a(n-1) - 2*a(n-2) - 3*a(n-4) - 14*a(n-5) - 14*a(n-6) - 14*a(n-7) - 13*a(n-8) - 6*a(n-9) - a(n-10).
Empirical g.f.: 2*x^2*(1 + x)*(1 - 2*x + 2*x^2 - 3*x^3 - x^4 - x^5 - x^6) / (1 - 2*x - x^2 - 2*x^3 - 3*x^4 - x^5)^2. - Colin Barker, Feb 11 2019

A279461 Number of n X 3 0..1 arrays with no element equal to a strict majority of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

2, 6, 33, 180, 1024, 5228, 26670, 134438, 670407, 3310176, 16219930, 78973826, 382408399, 1842856150, 8843787665, 42284752666, 201514337962, 957534960784, 4537926120718, 21454758254236, 101215638872346, 476553258095432
Offset: 1

Views

Author

R. H. Hardin, Dec 12 2016

Keywords

Comments

Column 3 of A279466.

Examples

			Some solutions for n=4
..0..0..1. .0..1..0. .0..1..1. .0..1..0. .0..1..1. .0..0..1. .0..1..0
..1..1..0. .1..0..1. .0..1..0. .0..0..1. .1..0..1. .1..1..0. .0..1..1
..0..0..1. .1..0..0. .0..0..0. .1..0..1. .0..0..1. .1..0..1. .1..0..0
..0..1..0. .1..1..0. .1..1..1. .1..1..0. .1..0..1. .1..0..1. .1..1..0
		

Crossrefs

Cf. A279466.

Formula

Empirical: a(n) = 10*a(n-1) -33*a(n-2) +58*a(n-3) -110*a(n-4) +76*a(n-5) -37*a(n-6) +46*a(n-7) +216*a(n-8) -90*a(n-9) +274*a(n-10) -480*a(n-11) -570*a(n-12) +82*a(n-13) -243*a(n-14) +666*a(n-15) +1279*a(n-16) +1154*a(n-17) -450*a(n-18) -3012*a(n-19) -1514*a(n-20) +298*a(n-21) -265*a(n-22) +2182*a(n-23) +4582*a(n-24) +864*a(n-25) -4441*a(n-26) -4314*a(n-27) -91*a(n-28) +2472*a(n-29) +1759*a(n-30) +214*a(n-31) -414*a(n-32) -306*a(n-33) -100*a(n-34) -16*a(n-35) -a(n-36).

A279462 Number of nX4 0..1 arrays with no element equal to a strict majority of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

2, 20, 180, 1722, 15484, 129914, 1079792, 8845592, 71540206, 572555634, 4544198480, 35814522446, 280584310722, 2186897305592, 16968580781888, 131145107324352, 1010053181919720, 7755079215544062, 59376833021426668
Offset: 1

Views

Author

R. H. Hardin, Dec 12 2016

Keywords

Comments

Column 4 of A279466.

Examples

			Some solutions for n=4
..0..1..0..0. .0..1..0..0. .0..0..1..0. .0..1..0..1. .0..0..1..0
..0..1..1..0. .1..0..1..0. .1..0..1..0. .1..1..0..1. .1..1..1..1
..1..0..1..1. .1..1..1..0. .1..0..1..0. .1..0..0..0. .0..0..0..0
..0..1..0..1. .0..0..1..0. .1..1..0..1. .0..1..1..0. .0..1..1..1
		

Crossrefs

Cf. A279466.

A279463 Number of nX5 0..1 arrays with no element equal to a strict majority of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

5, 66, 1024, 15484, 223261, 3086910, 41706415, 555052466, 7290902341, 94741575142, 1220402478079, 15606462944668, 198344727196650, 2507419882264676, 31552047403315039, 395430103470867594
Offset: 1

Views

Author

R. H. Hardin, Dec 12 2016

Keywords

Comments

Column 5 of A279466.

Examples

			Some solutions for n=4
..0..0..1..0..1. .0..1..1..1..0. .0..1..0..1..1. .0..1..0..1..0
..1..0..1..0..1. .1..0..0..0..1. .0..0..1..0..0. .0..1..0..0..1
..0..0..1..1..1. .0..1..1..0..1. .1..0..1..0..1. .1..0..1..0..1
..1..0..0..0..0. .0..1..0..0..0. .0..1..0..1..1. .0..1..1..1..0
		

Crossrefs

Cf. A279466.

A279464 Number of nX6 0..1 arrays with no element equal to a strict majority of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

8, 210, 5228, 129914, 3086910, 69493918, 1529974962, 33126514762, 707716447612, 14949807134092, 312951296969010, 6502024596897858, 134230949193071182, 2756009011243310442, 56318237615423387758, 1146080901776197182536
Offset: 1

Views

Author

R. H. Hardin, Dec 12 2016

Keywords

Comments

Column 6 of A279466.

Examples

			Some solutions for n=4
..0..0..1..1..0..1. .0..1..0..0..1..1. .0..0..1..1..0..0. .0..0..0..0..1..0
..1..0..0..1..1..1. .1..1..0..1..0..1. .1..0..0..0..1..0. .1..1..1..0..0..1
..1..1..0..0..0..0. .0..0..1..0..0..1. .1..0..1..0..1..1. .0..1..1..1..1..0
..0..1..1..1..1..1. .1..0..0..1..1..0. .0..1..1..0..0..1. .1..0..0..0..0..1
		

Crossrefs

Cf. A279466.

A279465 Number of nX7 0..1 arrays with no element equal to a strict majority of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

15, 658, 26670, 1079792, 41706415, 1529974962, 54755104784, 1926654903560, 66854006751350, 2293311539588776, 77940818083281196, 2628632829003297482, 88079138411703964163, 2934932008298081335876, 97326119686256417416192
Offset: 1

Views

Author

R. H. Hardin, Dec 12 2016

Keywords

Comments

Column 7 of A279466.

Examples

			Some solutions for n=3
..0..0..0..1..0..1..0. .0..0..1..0..1..0..1. .0..0..0..1..0..1..0
..1..1..1..1..0..0..0. .1..0..1..1..1..0..1. .1..1..0..1..0..1..1
..0..0..0..1..1..1..1. .0..1..0..1..0..1..0. .1..1..0..0..1..0..0
		

Crossrefs

Cf. A279466.
Showing 1-6 of 6 results.