This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A279483 #12 Aug 13 2025 21:27:24 %S A279483 0,0,0,8,24,144,240,672,960,2000,2640,4680,5880,9408,11424,17024, %T A279483 20160,28512,33120,45000,51480,67760,76560,98208,109824,137904,152880, %U A279483 188552,207480,252000,275520,330240,359040,425408,460224,539784,581400,675792,725040,836000,893760,1023120,1090320,1240008 %N A279483 Number of 2 X 2 matrices with entries in {0,1,...,n} and odd determinant with no entry repeated. %H A279483 Indranil Ghosh, <a href="/A279483/b279483.txt">Table of n, a(n) for n = 0..200</a> %H A279483 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1,4,-4,-6,6,4,-4,-1,1). %F A279483 From _Colin Barker_, Dec 13 2016: (Start) %F A279483 a(n) = (3*n^4 - 8*n^3 - 12*n^2 + 32*n)/8 for n even. %F A279483 a(n) = (3*n^4 - 4*n^3 - 10*n^2 + 4*n + 7)/8 for n odd. %F A279483 a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) - 6*a(n-4) + 6*a(n-5) + 4*a(n-6) - 4*a(n-7) - a(n-8) + a(n-9) for n>8. %F A279483 G.f.: 8*x^3*(1 + 2*x + 11*x^2 + 4*x^3) / ((1 - x)^5*(1 + x)^4). %F A279483 (End) %t A279483 CoefficientList[Series[8 x^3*(1 + 2 x + 11 x^2 + 4 x^3)/((1 - x)^5*(1 + x)^4), {x, 0, 43}], x] (* _Michael De Vlieger_, Dec 13 2016 *) %o A279483 (Python) %o A279483 def t(n): %o A279483 s=0 %o A279483 for a in range(0,n+1): %o A279483 for b in range(0,n+1): %o A279483 for c in range(0,n+1): %o A279483 for d in range(0,n+1): %o A279483 if (a!=b and a!=d and b!=d and c!=a and c!=b and c!=d): %o A279483 if (a*d-b*c)%2==1: %o A279483 s+=1 %o A279483 return s %o A279483 for i in range(0,201): %o A279483 print(i, t(i)) %o A279483 (PARI) F(n, {r=0})={my(s=vector(2), v); forvec(y=vector(4, j, [0, n]), for(k=23*!!r, 23, v=numtoperm(4, k); s[1+(y[v[1]]*y[v[4]]-y[v[3]]*y[v[2]])%2]++), 2*!r); return(s)} \\ a(n)=F(n, 0)[2]; %o A279483 (PARI) concat(vector(3), Vec(8*x^3*(1 + 2*x + 11*x^2 + 4*x^3) / ((1 - x)^5*(1 + x)^4) + O(x^40))) \\ _Colin Barker_, Dec 13 2016 %Y A279483 Cf. A210370 (where the entries can be repeated). %K A279483 nonn,easy %O A279483 0,4 %A A279483 _Indranil Ghosh_, Dec 13 2016