This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A279544 #40 May 27 2024 15:28:30 %S A279544 1,1,2,4,10,26,73,214,651,2040,6549,21453,71485,241702,827603,2865087, %T A279544 10014927,35307628,125427569,448616693,1614432373,5842129120, %U A279544 21247505098,77631329535,284832049361,1049092809734,3877749157355,14380314221305,53490244751332 %N A279544 Number of length n inversion sequences avoiding the patterns 000, 010, 100, 110, 120, and 210. %C A279544 A length n inversion sequence e_1e_2...e_n is a sequence of integers where 0 <= e_i <= i-1. The term a(n) counts those length n inversion sequences with no entries e_i, e_j, e_k (where i<j<k) such that e_j >= e_k and e_i >= e_k. This is the same as the set of length n inversion sequences avoiding 000, 010, 100, 110, 120, and 210. %H A279544 Alois P. Heinz, <a href="/A279544/b279544.txt">Table of n, a(n) for n = 0..600</a> %H A279544 Megan A. Martinez and Carla D. Savage, <a href="https://arxiv.org/abs/1609.08106">Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations</a>, arXiv:1609.08106 [math.CO], 2016. %F A279544 a(n) ~ c * 4^n / n^(3/2), where c = 0.0549097036253448014962069269284638611865763295943683310517... - _Vaclav Kotesovec_, Oct 07 2021 %e A279544 For n=3, the inversion sequences are 001, 002, 011, 012. %p A279544 b:= proc(n, i, m) option remember; `if`(i=0, 1, add( %p A279544 b(n-min(m, j), i-1, abs(m-j)), j=1..n-i+1)) %p A279544 end: %p A279544 a:= n-> b(n$2, 0): %p A279544 seq(a(n), n=0..30); # _Alois P. Heinz_, Dec 15 2016 %t A279544 b[n_, i_, m_] := b[n, i, m] = If[i == 0, 1, Sum[b[n - Min[m, j], i - 1, Abs[m - j]], {j, 1, n - i + 1}]]; %t A279544 a[n_] := b[n, n, 0]; %t A279544 Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Nov 10 2017, after _Alois P. Heinz_ *) %Y A279544 Cf. A000085, A263777, A263778, A263779, A263780. %K A279544 nonn %O A279544 0,3 %A A279544 _Megan A. Martinez_, Dec 14 2016 %E A279544 a(10)-a(28) from _Alois P. Heinz_, Dec 14 2016 %E A279544 Name and description corrected by _Nicholas R. Beaton_, May 02 2024