cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279609 a(n) = floor(H(k) + exp(H(k))*log(H(k))) - sigma(k) where H(k) is the k-th harmonic number Sum_{j=1..k} 1/j and k is the n-th colossally abundant number A004490(n).

Original entry on oeis.org

0, 0, 0, 2, 6, 34, 207, 492, 9051, 143828, 306310, 963859, 5155084, 81053635, 1334916490, 29106956400, 58655156200, 1817551636000, 56466287472000, 376943525488000, 1144451930851200, 41803526752345600
Offset: 2

Views

Author

Gene Ward Smith, Dec 15 2016

Keywords

Comments

By a theorem of J. C. Lagarias, the Riemann hypothesis is equivalent to the proposition that this sequence never takes a negative value. In fact, by inspection it appears to be monotone increasing; this conjecture implies the Riemann hypothesis but is not in any obvious way implied by it. Stronger conjectures are easy to formulate--for example, if F(n) is the function defined by this sequence, then F(n)/2^n also appears to be monotone increasing.

Crossrefs