cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279613 Expansion of the g.f. of A160534 in powers of A121593.

This page as a plain text file.
%I A279613 #15 Dec 24 2016 09:26:16
%S A279613 1,-7,42,-231,1155,-4998,15827,-791,-566244,6506955,-53524611,
%T A279613 369879930,-2218053747,11306008875,-43772711220,55203364377,
%U A279613 1172838094533,-16542312772356,150992704165079,-1130142960861845,7290759457923816
%N A279613 Expansion of the g.f. of A160534 in powers of A121593.
%C A279613 (eta(q))^7/eta(7*q) in powers of (eta(7*q)/eta(q))^4.
%C A279613 This sequence is u_n in Theorem 6.5 in O'Brien's thesis.
%D A279613 L. O'Brien, Modular forms and two new integer sequences at level 7, Massey University, 2016.
%H A279613 L. O'Brien, <a href="https://doi.org/10.13140/RG.2.2.33912.03843">Modular forms and two new integer sequences at level 7</a>, Massey University, 2016.
%F A279613 (n+1)^4a_7(n+1)=-(26*n^4+52*n^3+58*n^2+32*n+7)a_7(n)-(267*n^4+268*n^2+18)a_7(n-1)-(1274*n^4-2548*n^3+2842*n^2-1568*n+343)a_7(n-2)-2401(n-1)^4a_7(n-3)
%F A279613   with a_7(0)=1, a_7(-1)=a_7(-2)=a_7(-3)=0.
%F A279613 asymptotic conjecture: a(n) ~ C n^(-4/3) 7^n cos( n( arctan( (3*sqrt 3)/13) +Pi -1.083913253)), where C = 6.502807770...
%e A279613 G.f.: 1 - 7*x + 42*x^2 - 231*x^3 + 1155*x^4 - 4998*x^5 + ...
%Y A279613 Cf. A183204, A229111, A279618, A279619.
%K A279613 sign
%O A279613 1,2
%A A279613 _Lynette O'Brien_, Dec 15 2016