This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A279614 #9 Dec 15 2016 23:36:06 %S A279614 1,2,3,4,5,4,6,5,5,6,7,6,6,7,7,6,7,6,8,8,8,8,7,7,7,7,7,9,8,8,8,7,9,8, %T A279614 10,8,7,9,8,9,8,9,7,10,9,8,9,8,9,8,9,9,9,8,11,10,10,9,9,10,8,9,10,9, %U A279614 10,10,8,10,9,11,8,9,8,8,9,11,12,9,8,10,10,9 %N A279614 a(1)=1, a(d(x_1)*..*d(x_k)) = 1+a(x_1)+..+a(x_k) where d(n) = n-th Fermi-Dirac prime. %C A279614 A Fermi-Dirac prime (A050376) is a positive integer of the form p^(2^k) where p is prime and k>=0. %C A279614 In analogy with the Matula-Goebel correspondence between rooted trees and positive integers (see A061775), the iterated normalized Fermi-Dirac representation gives a correspondence between rooted identity trees and positive integers. Then a(n) is the number of nodes in the rooted identity tree corresponding to n. %H A279614 OEIS Wiki, <a href="/wiki/%22Fermi-Dirac_representation%22_of_n">"Fermi-Dirac representation" of n</a> %F A279614 Number of appearances of n is |a^{-1}(n)| = A004111(n). %e A279614 Sequence of rooted identity trees represented as finitary sets begins: %e A279614 {}, {{}}, {{{}}}, {{{{}}}}, {{{{{}}}}}, {{}{{}}}, {{{{{{}}}}}}, %e A279614 {{}{{{}}}}, {{{}{{}}}}, {{}{{{{}}}}}, {{{{{{{}}}}}}}, {{{}}{{{}}}}, %e A279614 {{{}{{{}}}}}, {{}{{{{{}}}}}}, {{{}}{{{{}}}}}, {{{{}{{}}}}}, %e A279614 {{{}{{{{}}}}}}, {{}{{}{{}}}}, {{{{{{{{}}}}}}}}, {{{{}}}{{{{}}}}}, %e A279614 {{{}}{{{{{}}}}}}, {{}{{{{{{}}}}}}}, {{{{}}{{{}}}}}, {{}{{}}{{{}}}}. %t A279614 nn=200; %t A279614 FDfactor[n_]:=If[n===1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]]; %t A279614 FDprimeList=Array[FDfactor,nn,1,Union]; %t A279614 FDweight[n_?(#<=nn&)]:=If[n===1,1,1+Total[FDweight[Position[FDprimeList,#][[1,1]]]&/@FDfactor[n]]]; %t A279614 Array[FDweight,nn] %Y A279614 Cf. A004111, A050376, A061773, A061775, A084400, A276625, A279065. %K A279614 nonn %O A279614 1,2 %A A279614 _Gus Wiseman_, Dec 15 2016