A279624 Numbers x such that BCR(x) = R(x), where BCR = binary-complement-and-reverse = take one's complement then reverse bit order and R(x) is the digits reverse of n.
2, 61, 212, 232, 666, 868, 2222, 642246, 687588, 820491, 885786, 2283822, 2459542, 2807082, 2860682, 45377354, 214878412, 841191148, 841740971, 49126162194
Offset: 1
Examples
687588 in base 2 is 10100111110111100100. Its binary-complement-and-reverse is 11011000010000011010, which is 885786 in base 10.
Programs
-
Maple
with(numtheory): T:=proc(w) local x, y, z; x:=w; y:=0; for z from 1 to ilog10(x)+1 do y:=10*y+(x mod 10); x:=trunc(x/10); od; y; end: P:=proc(q) local a,b, k,n; for n from 1 to q do a:=convert(n,base,2); b:=0; for k from 1 to nops(a) do if a[k]=0 then a[k]:=1 else a[k]:=0; fi; b:=2*b+a[k]; od; if b=n then print(n); fi; od; end: P(10^6);
-
Mathematica
Select[Range[10^6], MatchQ @@ {FromDigits[#, 2] &@ Reverse[ IntegerDigits[#, 2] /. {0 -> 1, 1 -> 0}], FromDigits@ Reverse@ IntegerDigits@ #} &] (* Michael De Vlieger, Dec 16 2016 *)
Extensions
a(17)-a(20) from Hans Havermann, Dec 23 2016