cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279649 Rows of the self-orthogonal Latin squares of order 8, lexicographically sorted.

This page as a plain text file.
%I A279649 #13 Feb 16 2025 08:33:38
%S A279649 1,2,3,4,5,6,7,8,3,4,1,2,6,5,8,7,4,5,7,3,8,2,1,6,6,7,5,8,3,1,2,4,7,1,
%T A279649 4,6,2,8,5,3,5,8,6,7,1,3,4,2,8,3,2,5,4,7,6,1,2,6,8,1,7,4,3,5,1,2,3,4,
%U A279649 5,6,7,8,3,4,1,2,6,5,8,7,4,5,8,3,7,2,6,1,6,8,5,7,3,1,4,2,8,1,4,6,2,7,3,5,5,7,6,8,1,3,2,4,2,6,7,1,8,4,5,3,7,3,2,5,4,8,1,6
%N A279649 Rows of the self-orthogonal Latin squares of order 8, lexicographically sorted.
%C A279649 An m X m Latin square consists of m sets of the numbers 1 to m arranged in such a way that no row or column contains the same number twice.
%C A279649 Two m X m Latin squares are orthogonal if no pair of corresponding elements occurs more than once.
%C A279649 A self-orthogonal Latin square is a Latin square that is orthogonal to its transpose.
%C A279649 There are 4180377600 self-orthogonal Latin squares of order 8.
%H A279649 Colin Barker, <a href="/A279649/b279649.txt">Table of n, a(n) for n = 1..750</a>
%H A279649 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LatinSquare.html">Latin square</a>
%H A279649 Wikipedia, <a href="http://en.wikipedia.org/wiki/Latin_square">Latin square</a>
%e A279649 The first four squares are:
%e A279649 1 2 3 4 5 6 7 8   1 2 3 4 5 6 7 8   1 2 3 4 5 6 7 8   1 2 3 4 5 6 7 8
%e A279649 3 4 1 2 6 5 8 7   3 4 1 2 6 5 8 7   3 4 1 2 6 5 8 7   3 4 1 2 6 5 8 7
%e A279649 4 5 7 3 8 2 1 6   4 5 8 3 7 2 6 1   4 6 7 3 2 8 1 5   4 6 8 3 2 7 5 1
%e A279649 6 7 5 8 3 1 2 4   6 8 5 7 3 1 4 2   5 7 6 8 1 3 2 4   5 8 6 7 1 3 4 2
%e A279649 7 1 4 6 2 8 5 3   8 1 4 6 2 7 3 5   6 8 5 7 3 1 4 2   6 7 5 8 3 1 2 4
%e A279649 5 8 6 7 1 3 4 2   5 7 6 8 1 3 2 4   7 1 4 5 8 2 6 3   8 1 4 5 7 2 3 6
%e A279649 8 3 2 5 4 7 6 1   2 6 7 1 8 4 5 3   8 3 2 6 7 4 5 1   2 5 7 1 4 8 6 3
%e A279649 2 6 8 1 7 4 3 5   7 3 2 5 4 8 1 6   2 5 8 1 4 7 3 6   7 3 2 6 8 4 1 5
%Y A279649 Cf. A160368, A279648, A279650, A279849, A279850.
%K A279649 nonn,fini,tabf
%O A279649 1,2
%A A279649 _Colin Barker_, Dec 16 2016