This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A279650 #10 Feb 16 2025 08:33:38 %S A279650 1,11,10,9,8,7,6,5,4,3,2,3,2,1,11,10,9,8,7,6,5,4,5,4,3,2,1,11,10,9,8, %T A279650 7,6,7,6,5,4,3,2,1,11,10,9,8,9,8,7,6,5,4,3,2,1,11,10,11,10,9,8,7,6,5, %U A279650 4,3,2,1,2,1,11,10,9,8,7,6,5,4,3,4,3,2,1,11,10,9,8,7,6,5,6,5,4,3,2,1,11,10,9,8,7,8,7,6,5,4,3,2,1,11,10,9,10,9,8,7,6,5,4,3,2,1,11 %N A279650 An idempotent self-orthogonal Latin square of order 11, read by rows. %C A279650 An m X m Latin square consists of m sets of the numbers 1 to m arranged in such a way that no row or column contains the same number twice. %C A279650 Two m X m Latin squares are orthogonal if no pair of corresponding elements occurs more than once. %C A279650 A self-orthogonal Latin square is a Latin square that is orthogonal to its transpose. %C A279650 An m X m self-orthogonal Latin square is idempotent if the diagonal contains 1 to m in order. %H A279650 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LatinSquare.html">Latin square</a> %H A279650 Wikipedia, <a href="http://en.wikipedia.org/wiki/Latin_square">Latin square</a> %e A279650 The Latin square is: %e A279650 1 11 10 9 8 7 6 5 4 3 2 %e A279650 3 2 1 11 10 9 8 7 6 5 4 %e A279650 5 4 3 2 1 11 10 9 8 7 6 %e A279650 7 6 5 4 3 2 1 11 10 9 8 %e A279650 9 8 7 6 5 4 3 2 1 11 10 %e A279650 11 10 9 8 7 6 5 4 3 2 1 %e A279650 2 1 11 10 9 8 7 6 5 4 3 %e A279650 4 3 2 1 11 10 9 8 7 6 5 %e A279650 6 5 4 3 2 1 11 10 9 8 7 %e A279650 8 7 6 5 4 3 2 1 11 10 9 %e A279650 10 9 8 7 6 5 4 3 2 1 11 %Y A279650 Cf. A160368, A279648, A279649, A279849, A279850. %K A279650 nonn,fini,full,tabf %O A279650 1,2 %A A279650 _Colin Barker_, Dec 16 2016