cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279650 An idempotent self-orthogonal Latin square of order 11, read by rows.

This page as a plain text file.
%I A279650 #10 Feb 16 2025 08:33:38
%S A279650 1,11,10,9,8,7,6,5,4,3,2,3,2,1,11,10,9,8,7,6,5,4,5,4,3,2,1,11,10,9,8,
%T A279650 7,6,7,6,5,4,3,2,1,11,10,9,8,9,8,7,6,5,4,3,2,1,11,10,11,10,9,8,7,6,5,
%U A279650 4,3,2,1,2,1,11,10,9,8,7,6,5,4,3,4,3,2,1,11,10,9,8,7,6,5,6,5,4,3,2,1,11,10,9,8,7,8,7,6,5,4,3,2,1,11,10,9,10,9,8,7,6,5,4,3,2,1,11
%N A279650 An idempotent self-orthogonal Latin square of order 11, read by rows.
%C A279650 An m X m Latin square consists of m sets of the numbers 1 to m arranged in such a way that no row or column contains the same number twice.
%C A279650 Two m X m Latin squares are orthogonal if no pair of corresponding elements occurs more than once.
%C A279650 A self-orthogonal Latin square is a Latin square that is orthogonal to its transpose.
%C A279650 An m X m self-orthogonal Latin square is idempotent if the diagonal contains 1 to m in order.
%H A279650 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LatinSquare.html">Latin square</a>
%H A279650 Wikipedia, <a href="http://en.wikipedia.org/wiki/Latin_square">Latin square</a>
%e A279650 The Latin square is:
%e A279650    1 11 10  9  8  7  6  5  4  3  2
%e A279650    3  2  1 11 10  9  8  7  6  5  4
%e A279650    5  4  3  2  1 11 10  9  8  7  6
%e A279650    7  6  5  4  3  2  1 11 10  9  8
%e A279650    9  8  7  6  5  4  3  2  1 11 10
%e A279650   11 10  9  8  7  6  5  4  3  2  1
%e A279650    2  1 11 10  9  8  7  6  5  4  3
%e A279650    4  3  2  1 11 10  9  8  7  6  5
%e A279650    6  5  4  3  2  1 11 10  9  8  7
%e A279650    8  7  6  5  4  3  2  1 11 10  9
%e A279650   10  9  8  7  6  5  4  3  2  1 11
%Y A279650 Cf. A160368, A279648, A279649, A279849, A279850.
%K A279650 nonn,fini,full,tabf
%O A279650 1,2
%A A279650 _Colin Barker_, Dec 16 2016