cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279675 Coefficients in the expansion of 1/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = 4/3.

This page as a plain text file.
%I A279675 #11 Dec 23 2016 21:32:49
%S A279675 1,-2,0,3,-2,-4,8,0,-16,16,16,-48,16,80,-112,-48,272,-176,-368,720,16,
%T A279675 -1456,1424,1488,-4336,1360,7312,-10032,-4592,24656,-15472,-33840,
%U A279675 64784,2896,-132464,126672,138256,-391600,115088,668112,-898288,-437936,2234512
%N A279675 Coefficients in the expansion of 1/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = 4/3.
%C A279675 If n >=7, then 16 divides a(n).
%H A279675 Clark Kimberling, <a href="/A279675/b279675.txt">Table of n, a(n) for n = 0..1000</a>
%H A279675 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (-1,-2).
%F A279675 G.f.: 1/(1 + 2x + 4x^2 + 5x^3 + 6x^4 + 8x^5 + ...).
%F A279675 G.f.: (1 - x) (1 - x^3)/(1 + x + 2 x^2).
%t A279675 z = 50; f[x_] := f[x] = Sum[Floor[(4/3)*(k + 1)] x^k, {k, 0, z}]; f[x]
%t A279675 CoefficientList[Series[1/f[x], {x, 0, z}], x]
%Y A279675 Cf. A279634, A279676.
%K A279675 sign,easy
%O A279675 0,2
%A A279675 _Clark Kimberling_, Dec 18 2016