cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279676 Coefficients in the expansion of 1/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = 5/3.

This page as a plain text file.
%I A279676 #9 Dec 23 2016 21:32:56
%S A279676 1,-3,4,-3,-1,8,-14,12,4,-32,56,-48,-16,128,-224,192,64,-512,896,-768,
%T A279676 -256,2048,-3584,3072,1024,-8192,14336,-12288,-4096,32768,-57344,
%U A279676 49152,16384,-131072,229376,-196608,-65536,524288,-917504,786432,262144,-2097152
%N A279676 Coefficients in the expansion of 1/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = 5/3.
%C A279676 If n >=11, then 16 divides a(n).
%H A279676 Clark Kimberling, <a href="/A279676/b279676.txt">Table of n, a(n) for n = 0..1000</a>
%H A279676 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (-2,-2).
%F A279676 G.f.: 1/(1 + 2x + 4x^2 + 5x^3 + 6x^4 + 8x^5 + ...).
%F A279676 G.f.: (1 - x) (1 - x^3)/(1 + 2 x + 2 x^2).
%t A279676 z = 50; f[x_] := f[x] = Sum[Floor[(5/3)*(k + 1)] x^k, {k, 0, z}]; f[x]
%t A279676 CoefficientList[Series[1/f[x], {x, 0, z}], x]
%Y A279676 Cf. A279634, A279675.
%K A279676 sign,easy
%O A279676 0,2
%A A279676 _Clark Kimberling_, Dec 18 2016