This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A279677 #11 Mar 07 2017 16:47:35 %S A279677 1,-2,1,-1,3,-3,2,-5,9,-8,9,-19,26,-25,37,-64,77,-87,138,-205,241, %T A279677 -312,481,-651,794,-1105,1613,-2096,2693,-3823,5322,-6885,9209,-12968, %U A279677 17529,-22979,31386,-43465,58037,-77344,106237,-144967,193418,-260925,357441 %N A279677 Coefficients in the expansion of 1/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = 5/4. %H A279677 Clark Kimberling, <a href="/A279677/b279677.txt">Table of n, a(n) for n = 0..1000</a> %H A279677 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (-1,-1,-2). %F A279677 G.f.: 1/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = 5/4. %F A279677 G.f.: (1 - x) (1 - x^4)/(1 + x + x^2 + 2 x^3). %t A279677 z = 50; f[x_] := f[x] = Sum[Floor[(5/4)*(k + 1)] x^k, {k, 0, z}]; f[x] %t A279677 CoefficientList[Series[1/f[x], {x, 0, z}], x] %Y A279677 Cf. A279634, A279678. %K A279677 sign,easy %O A279677 0,2 %A A279677 _Clark Kimberling_, Dec 18 2016