cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279677 Coefficients in the expansion of 1/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = 5/4.

This page as a plain text file.
%I A279677 #11 Mar 07 2017 16:47:35
%S A279677 1,-2,1,-1,3,-3,2,-5,9,-8,9,-19,26,-25,37,-64,77,-87,138,-205,241,
%T A279677 -312,481,-651,794,-1105,1613,-2096,2693,-3823,5322,-6885,9209,-12968,
%U A279677 17529,-22979,31386,-43465,58037,-77344,106237,-144967,193418,-260925,357441
%N A279677 Coefficients in the expansion of 1/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = 5/4.
%H A279677 Clark Kimberling, <a href="/A279677/b279677.txt">Table of n, a(n) for n = 0..1000</a>
%H A279677 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (-1,-1,-2).
%F A279677 G.f.: 1/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = 5/4.
%F A279677 G.f.: (1 - x) (1 - x^4)/(1 + x + x^2 + 2 x^3).
%t A279677 z = 50; f[x_] := f[x] = Sum[Floor[(5/4)*(k + 1)] x^k, {k, 0, z}]; f[x]
%t A279677 CoefficientList[Series[1/f[x], {x, 0, z}], x]
%Y A279677 Cf. A279634, A279678.
%K A279677 sign,easy
%O A279677 0,2
%A A279677 _Clark Kimberling_, Dec 18 2016