cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279678 Coefficients in the expansion of 1/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = 7/4.

This page as a plain text file.
%I A279678 #11 Mar 07 2017 16:49:18
%S A279678 1,-3,4,-4,5,-9,16,-24,34,-52,84,-132,200,-304,472,-736,1136,-1744,
%T A279678 2688,-4160,6432,-9920,15296,-23616,36480,-56320,86912,-134144,207104,
%U A279678 -319744,493568,-761856,1176064,-1815552,2802688,-4326400,6678528,-10309632,15915008
%N A279678 Coefficients in the expansion of 1/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = 7/4.
%C A279678 If n >=18, then 32 divides a(n).
%H A279678 Clark Kimberling, <a href="/A279678/b279678.txt">Table of n, a(n) for n = 0..1000</a>
%H A279678 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (-2,-2,-2).
%F A279678 G.f.: 1/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = 7/4.
%F A279678 G.f.: (1 - x) (1 - x^4)/(1 + 2 x + 2 x^2 + 2 x^3).
%t A279678 z = 50; f[x_] := f[x] = Sum[Floor[(7/4)*(k + 1)] x^k, {k, 0, z}]; f[x]
%t A279678 CoefficientList[Series[1/f[x], {x, 0, z}], x]
%Y A279678 Cf. A279634, A279677.
%K A279678 sign,easy
%O A279678 0,2
%A A279678 _Clark Kimberling_, Dec 18 2016