This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A279681 #20 Dec 21 2016 13:57:27 %S A279681 0,0,1,0,1,2,3,0,1,2,3,4,5,6,0,2,3,4,5,6,7,8,9,10,0,3,4,5,6,7,8,9,10, %T A279681 11,12,13,14,15,0,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,0,5, %U A279681 6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 %N A279681 Irregular triangle read by rows: possible numbers of diagonals of convex polyhedra having n vertices. %C A279681 Let n>4 denote the number of vertices. The set of possible numbers of diagonals is the union of sets {(k-1)(n-k-4), ..., (k-1)(n-(k+6)/2)}, where 1 <= k <= floor((sqrt(8n-15)-5)/2), and the set {(k-1)(n-k-4), ..., (n-3)(n-4)/2}, where k = floor((sqrt(8n-15)-3)/2). Note that cardinalities of all sets of this union excluding the last one are consecutive triangular numbers. %H A279681 Vladimir Letsko, <a href="http://www-old.fizmat.vspu.ru/doku.php?id=marathon:table_for_a279681">Table of rows of a(n)</a> %e A279681 Triangle begins: %e A279681 4 | 0; %e A279681 5 | 0, 1; %e A279681 6 | 0, 1, 2, 3; %e A279681 7 | 0, 1, 2, 3, 4, 5, 6; %e A279681 8 | 0, 2, 3, 4, 5, 6, 7, 8, 9, 10; %e A279681 9 | 0, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15; %e A279681 10 | 0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21; %p A279681 dm:=(n, k)->simplify((n-1)*n/2-(2*n-k-1)-(n-k)*(n-k-3)/2-2*(k-1)-(k+2)*(k-1)/2); %p A279681 dM:=(n, k)->simplify((n-1)*n/2-2*n-k+3-(n-k)*(n-k-3)/2); %p A279681 Dv:=proc(n) local k, DD; DD:={0}:for k from 2 to n/2-1 do %p A279681 DD:=DD union {seq(i, i=dm(n, k)..dM(n, k))} od: %p A279681 DD:=DD union {seq(i, i=dm(n, k-1)..(n-3)*(n-4)/2)}: %p A279681 DD end; %Y A279681 Row lengths are in A023536. %Y A279681 Cf. A000217, A279015, A279019, A279022, A279620, A279647, A279679. %K A279681 nonn,tabf %O A279681 4,6 %A A279681 _Vladimir Letsko_, Dec 16 2016