A279685 The maximum number of coins that can be processed in n weighings of an adaptive strategy that all are real (and identical) except for one LHR-coin starting in an unknown state.
1, 1, 3, 6, 16, 39, 91, 216, 499, 1144, 2651, 6152, 14227, 32904, 76187, 176376, 408179, 944728, 2186779, 5061544, 11715219, 27116008, 62762971, 145270808, 336242675, 778266424, 1801373403, 4169451080, 9650594451, 22337231432, 51701672731
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Tanya Khovanova and Konstantin Knop, Coins that Change Their Weights, arXiv:1611.09201 [math.CO], 2016.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,5,-4).
Programs
-
PARI
Vec((1 - 2*x + 3*x^2 - 5*x^3 + 6*x^4 - 2*x^5 + 4*x^6 + 4*x^7 - 7*x^8 - 4*x^9) / ((1 - x)*(1 - 2*x + x^2 - 4*x^3)) + O(x^40)) \\ Colin Barker, Dec 17 2016
Formula
From Colin Barker, Dec 17 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + 5*a(n-3) - 4*a(n-4) for n>9.
G.f.: (1 - 2*x + 3*x^2 - 5*x^3 + 6*x^4 - 2*x^5 + 4*x^6 + 4*x^7 - 7*x^8 - 4*x^9) / ((1 - x)*(1 - 2*x + x^2 - 4*x^3)).
(End)
Comments