This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A279702 #21 Dec 29 2016 03:55:23 %S A279702 -5,-6,-9,-18,-26,-34,-123,-107,3953,90021,203866,678250,3860926, %T A279702 62168609,1022130830,22777519100,46323907000,1499885420000, %U A279702 47625567000000,318447820000000,974228630000000,36070436000000000 %N A279702 a(n) = floor( exp(gamma) k log log k ) - sigma(k), where gamma is Euler's constant (A001620) and sigma(k) is sum of divisors of k (A000203), the n-th colossally abundant number (A004490). %C A279702 By Robin's theorem, if the Riemann hypothesis is true the only negative values this sequence attains are the first eight terms; if it is false, it becomes negative again somewhere farther on. Briggs conjectured, in effect, that this sequence is asymptotic to C k / sqrt(log(k)) for some constant C. %D A279702 G. Robin, Grandes valeurs de la fonction somme des diviseurs et hypothese de Riemann, J. Math. Pures Appl. 63 (1984), 187-213. %H A279702 Keith Briggs, <a href="https://projecteuclid.org/euclid.em/1175789744">Abundant numbers and the Riemann Hypothesis</a>, Experimental Math., Vol. 16 (2006), p. 251-256. %Y A279702 Cf. A004490, A058209. %K A279702 sign %O A279702 2,1 %A A279702 _Gene Ward Smith_, Dec 17 2016