cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279707 Number of nX6 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors and with new values introduced in order 0 sequentially upwards.

This page as a plain text file.
%I A279707 #4 Dec 17 2016 13:21:47
%S A279707 5,9,102,1195,14988,187484,2342179,29270275,365809911,4571688626,
%T A279707 57134413334,714035149793,8923627161193,111522680881055,
%U A279707 1393750357076514,17418341038959909,217685042385032357,2720510386500144294
%N A279707 Number of nX6 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors and with new values introduced in order 0 sequentially upwards.
%C A279707 Column 6 of A279709.
%H A279707 R. H. Hardin, <a href="/A279707/b279707.txt">Table of n, a(n) for n = 1..210</a>
%F A279707 Empirical: a(n) = 37*a(n-1) -596*a(n-2) +5876*a(n-3) -41252*a(n-4) +223532*a(n-5) -977316*a(n-6) +3536050*a(n-7) -10754246*a(n-8) +27797517*a(n-9) -61642501*a(n-10) +118357619*a(n-11) -198557227*a(n-12) +293436184*a(n-13) -384520035*a(n-14) +448773667*a(n-15) -467646170*a(n-16) +435555142*a(n-17) -362596124*a(n-18) +269556370*a(n-19) -178530525*a(n-20) +104895669*a(n-21) -54315067*a(n-22) +24563722*a(n-23) -9593323*a(n-24) +3191542*a(n-25) -889524*a(n-26) +203375*a(n-27) -37080*a(n-28) +5175*a(n-29) -518*a(n-30) +33*a(n-31) -a(n-32) for n>33
%e A279707 Some solutions for n=4
%e A279707 ..0..1..0..1..0..0. .0..1..0..1..0..1. .0..1..0..1..1..0. .0..1..0..1..0..1
%e A279707 ..0..1..0..1..1..0. .0..1..0..1..0..1. .0..1..0..0..1..0. .0..1..0..1..1..0
%e A279707 ..0..1..0..1..0..1. .1..0..1..0..1..1. .1..0..1..1..0..1. .0..1..0..0..0..1
%e A279707 ..0..1..0..1..0..1. .1..0..1..0..0..1. .1..0..0..1..0..1. .1..0..1..1..0..1
%Y A279707 Cf. A279709.
%K A279707 nonn
%O A279707 1,1
%A A279707 _R. H. Hardin_, Dec 17 2016