cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A279717 Binary representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 189", based on the 5-celled von Neumann neighborhood.

Original entry on oeis.org

1, 1, 10, 11, 10100, 111, 1101000, 1001111, 10000, 1110011111, 100100000, 110000111111, 101101000000, 11001111111, 110110010000000, 101100011111111, 11010100000000, 110110100111111111, 111101001000000000, 1101000001111111111, 11001111010000000000
Offset: 0

Views

Author

Robert Price, Dec 17 2016

Keywords

Comments

Initialized with a single black (ON) cell at stage zero.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Programs

  • Mathematica
    CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
    code = 189; stages = 128;
    rule = IntegerDigits[code, 2, 10];
    g = 2 * stages + 1; (* Maximum size of grid *)
    a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
    ca = a;
    ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
    PrependTo[ca, a];
    (* Trim full grid to reflect growth by one cell at each stage *)
    k = (Length[ca[[1]]] + 1)/2;
    ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
    Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]

A279718 Decimal representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 189", based on the 5-celled von Neumann neighborhood.

Original entry on oeis.org

1, 2, 2, 12, 5, 56, 11, 242, 16, 999, 36, 4035, 90, 16280, 155, 65306, 344, 261723, 606, 1047574, 1510, 4192566, 2422, 16773206, 6030, 67101866, 9476, 268419573, 23824, 1073714391, 37588, 4294902483, 96466, 17179761616, 154327, 68719220948, 392151
Offset: 0

Views

Author

Robert Price, Dec 17 2016

Keywords

Comments

Initialized with a single black (ON) cell at stage zero.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Programs

  • Mathematica
    CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
    code = 189; stages = 128;
    rule = IntegerDigits[code, 2, 10];
    g = 2 * stages + 1; (* Maximum size of grid *)
    a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
    ca = a;
    ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
    PrependTo[ca, a];
    (* Trim full grid to reflect growth by one cell at each stage *)
    k = (Length[ca[[1]]] + 1)/2;
    ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
    Table[FromDigits[Part[ca[[i]] [[i]], Range[1, i]], 2], {i, 1, stages - 1}]

A279719 Decimal representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 189", based on the 5-celled von Neumann neighborhood.

Original entry on oeis.org

1, 1, 2, 3, 20, 7, 104, 79, 16, 927, 288, 3135, 2880, 1663, 27776, 22783, 13568, 223743, 250368, 427007, 848896, 1779711, 3622912, 6950911, 14929920, 22323199, 17113088, 184041471, 18300928, 986349567, 363102208, 3410034687, 2520580096, 795475967
Offset: 0

Views

Author

Robert Price, Dec 17 2016

Keywords

Comments

Initialized with a single black (ON) cell at stage zero.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Programs

  • Mathematica
    CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
    code = 189; stages = 128;
    rule = IntegerDigits[code, 2, 10];
    g = 2 * stages + 1; (* Maximum size of grid *)
    a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
    ca = a;
    ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
    PrependTo[ca, a];
    (* Trim full grid to reflect growth by one cell at each stage *)
    k = (Length[ca[[1]]] + 1)/2;
    ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
    Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 2], {i ,1, stages - 1}]
Showing 1-3 of 3 results.