This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A279725 #52 May 04 2025 17:32:06 %S A279725 0,168,2022,15090,53160,196962,409956,1096368,2062140,4070796,6674010, %T A279725 12603174,18410352,31642836,45306438,67301682,93747984,142196892, %U A279725 183799392,267038772,342684960,458663640,582535842,793793994,963867732,1266864846,1550198598,1957887150,2357651670,3015489714 %N A279725 Number of 3 X 3 matrices having all terms in {0,1,...,n} with |det| = 1. %C A279725 a(n) is always even. %C A279725 a(n) mod 6 = 0. %H A279725 Robin Visser, <a href="/A279725/b279725.txt">Table of n, a(n) for n = 0..35</a> %H A279725 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/UnimodularMatrix.html">Unimodular Matrix</a> %H A279725 Wikipedia, <a href="https://en.wikipedia.org/wiki/Unimodular_matrix">Unimodular Matrix</a> %e A279725 For n=2, a few of the possible matrices are [0,0,1,0,1,0,1,0,0], [0,0,1,0,1,0,1,0,1], [0,0,1,0,1,0,1,0,2], [1,0,0,0,1,1,2,0,1], [1,0,0,0,1,1,2,1,0], [1,0,0,0,1,1,2,1,2], [2,2,1,2,1,2,1,0,2], [2,2,1,2,1,2,1,1,0], [2,2,1,2,1,2,1,1,1], [2,2,1,2,1,2,1,2,0], .... There are 2022 possibilities. %e A279725 Here each of the matrices is defined as M=[a,b,c,d,e,f,g,h,i] where a=M[1][1], b=M[1][2], c=M[1][3], d=M[2][1], e=M[2][2], f=M[2][3], g=M[3][1], h=M[3][2] and i=M[3][3]. %e A279725 So, for n=2, a(n)=2022. %o A279725 (Sage) %o A279725 import itertools %o A279725 def a(n): %o A279725 ans, W = 0, itertools.product(range(n+1), repeat=9) %o A279725 for w in W: %o A279725 if abs(Matrix(ZZ, 3, 3, w).det())==1: ans += 1 %o A279725 return ans # _Robin Visser_, May 01 2025 %Y A279725 Cf. A210000. %K A279725 nonn %O A279725 0,2 %A A279725 _Indranil Ghosh_, Jan 04 2017 %E A279725 More terms from _Robin Visser_, May 01 2025