cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279732 Lexicographically least strictly increasing sequence such that, for any n>0, Sum_{k=1..n} a(k) can be computed without carries in factorial base.

This page as a plain text file.
%I A279732 #16 Jan 06 2017 13:01:28
%S A279732 1,2,6,8,24,30,48,120,240,720,840,1440,1560,5040,10080,15120,40320,
%T A279732 45360,80640,120960,362880,403200,725760,1088640,3628800,3991680,
%U A279732 7257600,7620480,10886400,39916800,43545600,79833600,119750400,159667200,479001600,958003200
%N A279732 Lexicographically least strictly increasing sequence such that, for any n>0, Sum_{k=1..n} a(k) can be computed without carries in factorial base.
%C A279732 This sequence is to factorial base what A278742 is to base 10.
%C A279732 This sequence contains the factorial numbers (A000142); the corresponding indices are 1, 2, 3, 5, 8, 10, 14, 17, 21, 25, 30, 35, 39, 45, 49, 56, 62, 67, 74, 79, 87, 93, 102, 108, 116, 122, 131, 138, 148, 155, ...
%C A279732 Occasionally, the sum of the first n terms equals A033312(k) for some k;
%C A279732 - In that case: a(n+1)=k!, and k! divides a(m) for any m>n,
%C A279732 - The corresponding indices are 1, 7, 13, 34, 44, 61, 73, 101, 115, 147, 343, 387, 487, 605, 657, 788, 1226, 1296, 1575, 2986, 3586, 5152, 5260, 8236, 9173, ...
%C A279732 - Conjecture: this happens infinitely often.
%H A279732 Rémy Sigrist, <a href="/A279732/b279732.txt">Table of n, a(n) for n = 1..10000</a>
%H A279732 Rémy Sigrist, <a href="/A279732/a279732.gp.txt">PARI program for A279732</a>
%H A279732 <a href="/index/Fa#facbase">Index entries for sequences related to factorial base representation</a>
%e A279732 The first terms in base 10 and factorial base, alongside their partial sums in factorial base, are:
%e A279732 n    a(n)        a(n) in fact. base      Partial sum in fact. base
%e A279732 --   ---------   ---------------------   -------------------------
%e A279732 1            1                       1                         1
%e A279732 2            2                     1,0                       1,1
%e A279732 3            6                   1,0,0                     1,1,1
%e A279732 4            8                   1,1,0                     2,2,1
%e A279732 5           24                 1,0,0,0                   1,2,2,1
%e A279732 6           30                 1,1,0,0                   2,3,2,1
%e A279732 7           48                 2,0,0,0                   4,3,2,1
%e A279732 8          120               1,0,0,0,0                 1,4,3,2,1
%e A279732 9          240               2,0,0,0,0                 3,4,3,2,1
%e A279732 10         720             1,0,0,0,0,0               1,3,4,3,2,1
%e A279732 11         840             1,1,0,0,0,0               2,4,4,3,2,1
%e A279732 12        1440             2,0,0,0,0,0               4,4,4,3,2,1
%e A279732 13        1560             2,1,0,0,0,0               6,5,4,3,2,1
%e A279732 14        5040           1,0,0,0,0,0,0             1,6,5,4,3,2,1
%e A279732 15       10080           2,0,0,0,0,0,0             3,6,5,4,3,2,1
%e A279732 16       15120           3,0,0,0,0,0,0             6,6,5,4,3,2,1
%e A279732 17       40320         1,0,0,0,0,0,0,0           1,6,6,5,4,3,2,1
%e A279732 18       45360         1,1,0,0,0,0,0,0           2,7,6,5,4,3,2,1
%e A279732 19       80640         2,0,0,0,0,0,0,0           4,7,6,5,4,3,2,1
%e A279732 20      120960         3,0,0,0,0,0,0,0           7,7,6,5,4,3,2,1
%e A279732 21      362880       1,0,0,0,0,0,0,0,0         1,7,7,6,5,4,3,2,1
%e A279732 22      403200       1,1,0,0,0,0,0,0,0         2,8,7,6,5,4,3,2,1
%e A279732 23      725760       2,0,0,0,0,0,0,0,0         4,8,7,6,5,4,3,2,1
%e A279732 24     1088640       3,0,0,0,0,0,0,0,0         7,8,7,6,5,4,3,2,1
%e A279732 25     3628800     1,0,0,0,0,0,0,0,0,0       1,7,8,7,6,5,4,3,2,1
%e A279732 26     3991680     1,1,0,0,0,0,0,0,0,0       2,8,8,7,6,5,4,3,2,1
%e A279732 27     7257600     2,0,0,0,0,0,0,0,0,0       4,8,8,7,6,5,4,3,2,1
%e A279732 28     7620480     2,1,0,0,0,0,0,0,0,0       6,9,8,7,6,5,4,3,2,1
%e A279732 29    10886400     3,0,0,0,0,0,0,0,0,0       9,9,8,7,6,5,4,3,2,1
%e A279732 30    39916800   1,0,0,0,0,0,0,0,0,0,0     1,9,9,8,7,6,5,4,3,2,1
%e A279732 31    43545600   1,1,0,0,0,0,0,0,0,0,0    2,10,9,8,7,6,5,4,3,2,1
%e A279732 32    79833600   2,0,0,0,0,0,0,0,0,0,0    4,10,9,8,7,6,5,4,3,2,1
%e A279732 33   119750400   3,0,0,0,0,0,0,0,0,0,0    7,10,9,8,7,6,5,4,3,2,1
%e A279732 34   159667200   4,0,0,0,0,0,0,0,0,0,0   11,10,9,8,7,6,5,4,3,2,1
%t A279732 r = MixedRadix[Reverse@ Range[2, 30]]; f[a_] := Function[w, Function[s, Total@ Map[PadLeft[#, s] &, w]]@ Max@ Map[Length, w]]@ Map[IntegerDigits[#, r] &, a]; g[w_] := Times @@ Boole@ MapIndexed[#1 <= First@ #2 &, Reverse@ w] > 0; a = {1}; Do[k = Max@ a + 1; While[! g@ f@ Join[a, {k}], k++]; AppendTo[a, k], {n, 2, 16}]; a (* _Michael De Vlieger_, Dec 18 2016 *)
%Y A279732 Cf. A000142, A007623, A033312, A278742, A278743.
%K A279732 nonn,base
%O A279732 1,2
%A A279732 _Rémy Sigrist_, Dec 18 2016