A279737 Number of nX4 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
2, 14, 106, 736, 4940, 32430, 209558, 1337624, 8453760, 52990574, 329875212, 2041484910, 12570123264, 77057213940, 470543267950, 2863457284456, 17371926764454, 105101255047984, 634288745035896, 3819316295044450
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..1..0..1. .0..1..1..0. .0..1..0..0. .0..1..0..1. .0..1..0..1 ..1..0..1..1. .0..0..1..1. .0..1..1..0. .0..1..0..1. .0..1..1..0 ..1..0..0..0. .0..1..0..1. .0..0..1..1. .1..1..0..1. .1..0..1..0 ..0..1..0..1. .0..0..1..0. .1..1..0..1. .0..1..0..1. .1..1..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A279741.
Formula
Empirical: a(n) = 20*a(n-1) -166*a(n-2) +782*a(n-3) -2465*a(n-4) +5714*a(n-5) -10213*a(n-6) +14398*a(n-7) -16186*a(n-8) +14502*a(n-9) -10252*a(n-10) +5622*a(n-11) -2332*a(n-12) +704*a(n-13) -145*a(n-14) +18*a(n-15) -a(n-16) for n>17
Comments