A279739 Number of nX6 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
8, 48, 746, 11434, 167904, 2407152, 33954530, 472691878, 6511502806, 88926626284, 1205703682142, 16247311565782, 217785573891544, 2905922099529922, 38618121561891188, 511391035788735602, 6750548575431539154
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..1..0..0..1..1. .0..1..0..1..0..1. .0..1..0..1..0..1. .0..1..0..0..1..1 ..0..1..1..0..0..1. .0..1..0..1..0..1. .1..1..0..0..1..0. .0..0..1..0..0..1 ..0..1..0..1..0..0. .0..1..1..0..0..1. .0..0..1..0..0..1. .1..1..0..0..1..0 ..1..0..1..0..1..1. .0..0..1..1..0..0. .1..0..1..1..0..1. .0..1..1..0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
- R. H. Hardin, Empirical recurrence of order 64
Crossrefs
Cf. A279741.
Formula
Empirical recurrence of order 64 (see link above)
Comments