cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A279735 Number of n X 2 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

0, 2, 8, 26, 80, 240, 708, 2062, 5944, 16990, 48220, 136032, 381768, 1066586, 2968040, 8230370, 22751528, 62716752, 172447884, 473081830, 1295113240, 3538749862, 9652296628, 26285128896, 71472896400, 194075990450, 526312559048
Offset: 1

Views

Author

R. H. Hardin, Dec 18 2016

Keywords

Examples

			Some solutions for n=4:
..0..1. .0..0. .0..1. .0..1. .0..1. .0..0. .0..1. .0..0. .0..1. .0..1
..0..1. .1..1. .0..0. .0..1. .0..0. .1..0. .1..0. .1..0. .0..0. .0..1
..1..0. .0..1. .1..1. .1..1. .0..1. .1..1. .1..1. .1..0. .1..0. .0..0
..1..1. .0..1. .1..0. .0..1. .1..0. .0..1. .1..0. .1..0. .1..1. .1..1
		

Crossrefs

Column 2 of A279741.

Formula

Empirical: a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) - a(n-4).
Conjectures from Colin Barker, Feb 11 2019: (Start)
G.f.: 2*x^2*(1 - 2*x) / (1 - 3*x + x^2)^2.
a(n) = (-1)*(2^(1-n)*(sqrt(5)*((3-sqrt(5))^n-(3+sqrt(5))^n) + 5*(3-sqrt(5))^n*(2+sqrt(5))*n - 5*(-2+sqrt(5))*(3+sqrt(5))^n*n)) / 25.
(End)

A279736 Number of n X 3 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

2, 6, 35, 168, 766, 3402, 14827, 63680, 270313, 1136546, 4740986, 19644984, 80939021, 331835984, 1354628539, 5508982340, 22328647462, 90229615030, 363633214831, 1461903606752, 5864244756909, 23476219277174, 93808204087890
Offset: 1

Views

Author

R. H. Hardin, Dec 18 2016

Keywords

Examples

			Some solutions for n=4:
..0..1..0. .0..1..0. .0..1..0. .0..1..0. .0..1..1. .0..1..0. .0..1..0
..1..0..0. .0..1..1. .0..1..1. .0..0..1. .0..0..1. .1..0..1. .0..0..1
..1..1..1. .1..0..0. .0..1..1. .0..1..0. .1..1..1. .1..1..1. .1..0..1
..0..1..0. .1..0..1. .0..0..1. .1..0..1. .1..0..1. .0..0..1. .1..1..0
		

Crossrefs

Column 3 of A279741.

Formula

Empirical: a(n) = 10*a(n-1) - 35*a(n-2) + 54*a(n-3) - 45*a(n-4) + 20*a(n-5) - 4*a(n-6) for n>7.
Empirical g.f.: x*(1 - x)*(1 - 2*x)*(2 - 8*x + 17*x^2 - 13*x^3 + 4*x^4) / (1 - 5*x + 5*x^2 - 2*x^3)^2. - Colin Barker, Feb 11 2019

A279737 Number of nX4 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

2, 14, 106, 736, 4940, 32430, 209558, 1337624, 8453760, 52990574, 329875212, 2041484910, 12570123264, 77057213940, 470543267950, 2863457284456, 17371926764454, 105101255047984, 634288745035896, 3819316295044450
Offset: 1

Views

Author

R. H. Hardin, Dec 18 2016

Keywords

Comments

Column 4 of A279741.

Examples

			Some solutions for n=4
..0..1..0..1. .0..1..1..0. .0..1..0..0. .0..1..0..1. .0..1..0..1
..1..0..1..1. .0..0..1..1. .0..1..1..0. .0..1..0..1. .0..1..1..0
..1..0..0..0. .0..1..0..1. .0..0..1..1. .1..1..0..1. .1..0..1..0
..0..1..0..1. .0..0..1..0. .1..1..0..1. .0..1..0..1. .1..1..0..1
		

Crossrefs

Cf. A279741.

Formula

Empirical: a(n) = 20*a(n-1) -166*a(n-2) +782*a(n-3) -2465*a(n-4) +5714*a(n-5) -10213*a(n-6) +14398*a(n-7) -16186*a(n-8) +14502*a(n-9) -10252*a(n-10) +5622*a(n-11) -2332*a(n-12) +704*a(n-13) -145*a(n-14) +18*a(n-15) -a(n-16) for n>17

A279738 Number of nX5 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

5, 26, 286, 2948, 29140, 281350, 2672708, 25057618, 232453138, 2137856646, 19520180011, 177142880376, 1599086960917, 14369091541568, 128599776050102, 1146851081407532, 10195271184154052, 90377052821887506, 799110404458844621
Offset: 1

Views

Author

R. H. Hardin, Dec 18 2016

Keywords

Comments

Column 5 of A279741.

Examples

			Some solutions for n=4
..0..1..0..1..1. .0..1..1..0..0. .0..1..0..1..1. .0..1..1..0..0
..1..0..0..0..1. .0..0..1..1..1. .0..0..0..0..0. .0..1..1..1..0
..1..1..0..1..1. .1..0..0..0..1. .0..1..1..1..0. .0..0..1..1..0
..1..0..1..0..1. .0..1..0..0..1. .1..0..1..0..1. .1..0..0..1..0
		

Crossrefs

Cf. A279741.

Formula

Empirical: a(n) = 35*a(n-1) -537*a(n-2) +4917*a(n-3) -31037*a(n-4) +147039*a(n-5) -550776*a(n-6) +1684140*a(n-7) -4287367*a(n-8) +9195097*a(n-9) -16722579*a(n-10) +25851599*a(n-11) -33949278*a(n-12) +37773854*a(n-13) -35490491*a(n-14) +28069727*a(n-15) -18639724*a(n-16) +10365480*a(n-17) -4808439*a(n-18) +1847719*a(n-19) -580867*a(n-20) +146321*a(n-21) -28520*a(n-22) +4040*a(n-23) -368*a(n-24) +16*a(n-25) for n>26

A279739 Number of nX6 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

8, 48, 746, 11434, 167904, 2407152, 33954530, 472691878, 6511502806, 88926626284, 1205703682142, 16247311565782, 217785573891544, 2905922099529922, 38618121561891188, 511391035788735602, 6750548575431539154
Offset: 1

Views

Author

R. H. Hardin, Dec 18 2016

Keywords

Comments

Column 6 of A279741.

Examples

			Some solutions for n=4
..0..1..0..0..1..1. .0..1..0..1..0..1. .0..1..0..1..0..1. .0..1..0..0..1..1
..0..1..1..0..0..1. .0..1..0..1..0..1. .1..1..0..0..1..0. .0..0..1..0..0..1
..0..1..0..1..0..0. .0..1..1..0..0..1. .0..0..1..0..0..1. .1..1..0..0..1..0
..1..0..1..0..1..1. .0..0..1..1..0..0. .1..0..1..1..0..1. .0..1..1..0..1..0
		

Crossrefs

Cf. A279741.

Formula

Empirical recurrence of order 64 (see link above)

A279740 Number of nX7 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

15, 84, 1887, 42494, 927615, 19743140, 413326300, 8539248826, 174560480712, 3537506044402, 71169030410069, 1423001109534686, 28301960051430033, 560308589581483944, 11048008697742462541, 217065217267795946642
Offset: 1

Views

Author

R. H. Hardin, Dec 18 2016

Keywords

Comments

Column 7 of A279741.

Examples

			Some solutions for n=4
..0..1..1..0..0..1..0. .0..1..1..0..1..0..1. .0..1..0..1..0..1..0
..0..0..1..1..1..1..0. .0..0..1..1..0..1..0. .0..0..1..0..0..1..0
..1..0..0..1..0..1..1. .1..0..0..0..1..1..1. .1..0..1..0..1..1..0
..1..1..0..1..0..0..1. .0..1..1..0..0..0..1. .1..0..1..0..1..1..0
		

Crossrefs

Cf. A279741.

A279742 Number of 2 X n 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

0, 2, 6, 14, 26, 48, 84, 146, 250, 426, 722, 1220, 2056, 3458, 5806, 9734, 16298, 27256, 45532, 75986, 126690, 211042, 351266, 584204, 970896, 1612418, 2676054, 4438526, 7357370, 12188736, 20181732, 33398930, 55244746, 91336218, 150937586
Offset: 1

Views

Author

R. H. Hardin, Dec 18 2016

Keywords

Examples

			Some solutions for n=4:
..0..0..1..0. .0..1..0..0. .0..1..1..0. .0..1..1..0. .0..1..1..0
..1..0..1..0. .1..0..1..0. .0..0..1..1. .0..1..0..1. .1..0..1..0
		

Crossrefs

Row 2 of A279741.

Formula

Empirical: a(n) = 3*a(n-1) - a(n-2) - 3*a(n-3) + a(n-4) + a(n-5).
Empirical g.f.: 2*x^2*(1 - x^2 - 2*x^3) / ((1 - x)*(1 - x - x^2)^2). - Colin Barker, Feb 11 2019

A279743 Number of 3Xn 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

0, 8, 35, 106, 286, 746, 1887, 4700, 11553, 28104, 67759, 162144, 385583, 912098, 2147806, 5037496, 11773111, 27427532, 63715400, 147634764, 341291898, 787312776, 1812720970, 4166252110, 9559865376, 21903001872, 50112866179
Offset: 1

Views

Author

R. H. Hardin, Dec 18 2016

Keywords

Comments

Row 3 of A279741.

Examples

			Some solutions for n=4
..0..1..0..1. .0..1..1..1. .0..1..0..1. .0..1..0..0. .0..1..0..1
..1..0..0..0. .0..1..0..0. .1..0..0..1. .0..1..1..1. .0..0..0..0
..0..1..1..0. .0..1..1..0. .1..1..0..0. .0..0..0..1. .0..1..1..0
		

Crossrefs

Cf. A279741.

Formula

Empirical: a(n) = 6*a(n-1) -13*a(n-2) +10*a(n-3) +10*a(n-4) -30*a(n-5) +21*a(n-6) +2*a(n-7) -14*a(n-8) +10*a(n-9) -7*a(n-10) +6*a(n-11) +6*a(n-12) -2*a(n-13) -a(n-14) -2*a(n-15) -a(n-16) for n>18

A279744 Number of 4Xn 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

0, 26, 168, 736, 2948, 11434, 42494, 154886, 554894, 1962216, 6863344, 23793932, 81876322, 279975202, 952219158, 3223476464, 10867630142, 36506995228, 122242241376, 408146874402, 1359207500258, 4515810568242, 14971262615738
Offset: 1

Views

Author

R. H. Hardin, Dec 18 2016

Keywords

Comments

Row 4 of A279741.

Examples

			Some solutions for n=4
..0..0..1..1. .0..1..1..0. .0..1..0..1. .0..0..1..0. .0..1..0..1
..1..0..0..0. .1..0..1..1. .1..0..1..0. .1..0..1..0. .1..1..0..1
..1..1..1..0. .0..1..0..0. .1..1..1..1. .1..0..1..0. .0..0..1..0
..0..1..0..1. .1..0..1..0. .1..0..0..1. .0..1..0..1. .1..0..1..0
		

Crossrefs

Cf. A279741.

Formula

Empirical: a(n) = 15*a(n-1) -97*a(n-2) +349*a(n-3) -719*a(n-4) +605*a(n-5) +988*a(n-6) -3940*a(n-7) +5528*a(n-8) -2372*a(n-9) -4242*a(n-10) +7466*a(n-11) -4480*a(n-12) +4508*a(n-13) -15704*a(n-14) +23204*a(n-15) -1380*a(n-16) -40516*a(n-17) +52888*a(n-18) -15504*a(n-19) -18615*a(n-20) -715*a(n-21) +29269*a(n-22) +10487*a(n-23) -77888*a(n-24) +64000*a(n-25) +15211*a(n-26) -48111*a(n-27) +12999*a(n-28) +903*a(n-29) +8726*a(n-30) +4570*a(n-31) -4063*a(n-32) -1491*a(n-33) -2565*a(n-34) -131*a(n-35) +130*a(n-36) +110*a(n-37) +293*a(n-38) +115*a(n-39) +104*a(n-40) +40*a(n-41) +17*a(n-42) +7*a(n-43) +a(n-44) +a(n-45) for n>50

A279745 Number of 5Xn 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

0, 80, 766, 4940, 29140, 167904, 927615, 5029822, 26842413, 141506744, 738488507, 3821661440, 19635250935, 100265767074, 509297332780, 2575109743084, 12967976929637, 65073500707556, 325507453206018, 1623623692686646
Offset: 1

Views

Author

R. H. Hardin, Dec 18 2016

Keywords

Comments

Row 5 of A279741.

Examples

			Some solutions for n=4
..0..1..0..1. .0..1..0..1. .0..1..1..0. .0..1..0..1. .0..1..0..1
..0..1..1..0. .0..1..1..0. .0..1..1..0. .0..1..1..0. .0..1..1..0
..0..0..1..0. .1..0..0..1. .0..1..0..0. .0..0..1..0. .0..0..1..1
..0..1..1..1. .1..1..1..1. .0..1..1..0. .0..0..1..0. .1..1..0..1
..0..0..0..1. .0..1..0..1. .0..1..0..1. .0..1..0..1. .0..0..1..0
		

Crossrefs

Cf. A279741.
Showing 1-10 of 13 results. Next