A279742 Number of 2 X n 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
0, 2, 6, 14, 26, 48, 84, 146, 250, 426, 722, 1220, 2056, 3458, 5806, 9734, 16298, 27256, 45532, 75986, 126690, 211042, 351266, 584204, 970896, 1612418, 2676054, 4438526, 7357370, 12188736, 20181732, 33398930, 55244746, 91336218, 150937586
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0..1..0. .0..1..0..0. .0..1..1..0. .0..1..1..0. .0..1..1..0 ..1..0..1..0. .1..0..1..0. .0..0..1..1. .0..1..0..1. .1..0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 2 of A279741.
Formula
Empirical: a(n) = 3*a(n-1) - a(n-2) - 3*a(n-3) + a(n-4) + a(n-5).
Empirical g.f.: 2*x^2*(1 - x^2 - 2*x^3) / ((1 - x)*(1 - x - x^2)^2). - Colin Barker, Feb 11 2019