A279743 Number of 3Xn 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
0, 8, 35, 106, 286, 746, 1887, 4700, 11553, 28104, 67759, 162144, 385583, 912098, 2147806, 5037496, 11773111, 27427532, 63715400, 147634764, 341291898, 787312776, 1812720970, 4166252110, 9559865376, 21903001872, 50112866179
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..1..0..1. .0..1..1..1. .0..1..0..1. .0..1..0..0. .0..1..0..1 ..1..0..0..0. .0..1..0..0. .1..0..0..1. .0..1..1..1. .0..0..0..0 ..0..1..1..0. .0..1..1..0. .1..1..0..0. .0..0..0..1. .0..1..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A279741.
Formula
Empirical: a(n) = 6*a(n-1) -13*a(n-2) +10*a(n-3) +10*a(n-4) -30*a(n-5) +21*a(n-6) +2*a(n-7) -14*a(n-8) +10*a(n-9) -7*a(n-10) +6*a(n-11) +6*a(n-12) -2*a(n-13) -a(n-14) -2*a(n-15) -a(n-16) for n>18
Comments