This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A279757 #9 Feb 16 2025 08:33:38 %S A279757 1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,5,5,5,5,5,6,7,7,7,7,7,8,9,9,9, %T A279757 9,9,10,11,12,12,12,12,13,14,16,16,16,16,17,18,20,20,20,20,21,22,24, %U A279757 25,25,25,26,27,29,31,31,31,32,33,35,37,37,37,38,39,41,43,44,44,45,46,48,50,52,52,53,55,57,59,62,62,63,65,67,69,72,73 %N A279757 Expansion of Product_{k>=1} 1/(1 - x^(k*(2*k^2+1)/3)). %C A279757 Number of partitions of n into nonzero octahedral numbers (A005900). %H A279757 M. Bernstein and N. J. A. Sloane, <a href="http://arXiv.org/abs/math.CO/0205301">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version] %H A279757 M. Bernstein and N. J. A. Sloane, <a href="/A003633/a003633_1.pdf">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures] %H A279757 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/OctahedralNumber.html">Octahedral Number</a> %H A279757 OEIS Wiki, <a href="https://oeis.org/wiki/Platonic_numbers">Platonic numbers</a> %H A279757 <a href="/index/Par#partN">Index entries for related partition-counting sequences</a> %F A279757 G.f.: Product_{k>=1} 1/(1 - x^(k*(2*k^2+1)/3)). %e A279757 a(7) = 2 because we have [6, 1] and [1, 1, 1, 1, 1, 1, 1]. %t A279757 nmax=95; CoefficientList[Series[Product[1/(1 - x^(k (2 k^2 + 1)/3)), {k, 1, nmax}], {x, 0, nmax}], x] %Y A279757 Cf. A003108, A005900, A068980, A279758, A279759. %K A279757 nonn %O A279757 0,7 %A A279757 _Ilya Gutkovskiy_, Dec 18 2016