This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A279759 #8 May 08 2017 00:26:50 %S A279759 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2, %T A279759 2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4, %U A279759 4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9 %N A279759 Expansion of Product_{k>=1} 1/(1 - x^(k*(3*k-1)*(3*k-2)/2)). %C A279759 Number of partitions of n into nonzero dodecahedral numbers (A006566). %H A279759 M. Bernstein and N. J. A. Sloane, <a href="http://arXiv.org/abs/math.CO/0205301">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version] %H A279759 M. Bernstein and N. J. A. Sloane, <a href="/A003633/a003633_1.pdf">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures] %H A279759 OEIS Wiki, <a href="https://oeis.org/wiki/Platonic_numbers">Platonic numbers</a> %H A279759 <a href="/index/Par#partN">Index entries for related partition-counting sequences</a> %F A279759 G.f.: Product_{k>=1} 1/(1 - x^(k*(3*k-1)*(3*k-2)/2)). %e A279759 a(21) = 2 because we have [20, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]. %t A279759 nmax=120; CoefficientList[Series[Product[1/(1 - x^(k (3 k - 1) (3 k - 2)/2)), {k, 1, nmax}], {x, 0, nmax}], x] %Y A279759 Cf. A003108, A006566, A068980, A279757, A279758. %K A279759 nonn %O A279759 0,21 %A A279759 _Ilya Gutkovskiy_, Dec 18 2016