cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279778 Coefficients in the expansion of 1/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = 6/5.

This page as a plain text file.
%I A279778 #15 Mar 11 2024 19:25:25
%S A279778 1,-2,1,0,-1,3,-3,1,1,-5,9,-7,1,7,-19,25,-15,-5,33,-63,65,-25,-43,129,
%T A279778 -191,155,-7,-215,449,-537,317,201,-879,1435,-1391,433,1281,-3193,
%U A279778 4261,-3215,-415,5755,-10647,11737,-6015,-6585,22157,-33031,29489,-5445
%N A279778 Coefficients in the expansion of 1/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = 6/5.
%H A279778 Clark Kimberling, <a href="/A279778/b279778.txt">Table of n, a(n) for n = 0..1000</a>
%H A279778 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (-1,-1,-1,-2).
%F A279778 G.f.: 1/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = 6/5.
%F A279778 G.f.: (1 - x) (1 - x^5)/(1 + x + x^2 + x^3 + 2 x^4).
%t A279778 z = 50; f[x_] := f[x] = Sum[Floor[(6/5)*(k + 1)] x^k, {k, 0, z}]; f[x]
%t A279778 CoefficientList[Series[1/f[x], {x, 0, z}], x]
%t A279778 LinearRecurrence[{-1,-1,-1,-2},{1,-2,0,-1,3,-3},50] (* _Harvey P. Dale_, Mar 11 2024 *)
%Y A279778 Cf. A279634, A279779, A279780, A279781.
%K A279778 sign,easy
%O A279778 0,2
%A A279778 _Clark Kimberling_, Dec 18 2016