cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279779 Coefficients in the expansion of 1/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = 7/5.

This page as a plain text file.
%I A279779 #15 Jan 02 2017 11:07:14
%S A279779 1,-2,0,3,-3,0,4,-7,5,5,-16,15,2,-26,39,-19,-37,88,-73,-28,160,-207,
%T A279779 61,249,-484,339,258,-950,1063,-99,-1593,2628,-1469,-1996,5492,-5287,
%U A279779 -763,9837,-14008,5671,14034,-31042,25319,11389,-59053,73040,-16961,-92844
%N A279779 Coefficients in the expansion of 1/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = 7/5.
%H A279779 Clark Kimberling, <a href="/A279779/b279779.txt">Table of n, a(n) for n = 0..1000</a>
%H A279779 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (-1,-2,-1,-2).
%F A279779 G.f.: 1/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = 7/5.
%F A279779 G.f.: (1 - x) (1 - x^5)/(1 + x + 2 x^2 + x^3 + 2 x^4).
%t A279779 z = 50; f[x_] := f[x] = Sum[Floor[(7/5)*(k + 1)] x^k, {k, 0, z}]; f[x]
%t A279779 CoefficientList[Series[1/f[x], {x, 0, z}], x]
%Y A279779 Cf. A279634, A279778, A279780, A279781.
%K A279779 sign,easy
%O A279779 0,2
%A A279779 _Clark Kimberling_, Dec 18 2016