This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A279786 #16 Jul 17 2018 21:50:50 %S A279786 1,1,2,4,5,9,16,22,28,49,69,94,138,187,257,374,479,639,886,1146,1577, %T A279786 2103,2676,3534,4620,5910,7542,9816,12650,15986,20538,25740,32632, %U A279786 41442,51383,64771,81281,100729,125041,155557,192641,236810,293593,359880,441276 %N A279786 Twice-partitioned numbers where the first partition is strict and the latter partitions are constant. %H A279786 Alois P. Heinz, <a href="/A279786/b279786.txt">Table of n, a(n) for n = 0..8000</a> %H A279786 Gus Wiseman, <a href="/A063834/a063834.txt">Sequences enumerating triangles of integer partitions</a> %F A279786 G.f.: exp(Sum_{k>=1} Sum_{j>=1} (-1)^(k+1)*d(j)^k*x^(j*k)/k), where d(j) is the number of the divisors of j (A000005). - _Ilya Gutkovskiy_, Jul 17 2018 %e A279786 The a(5)=9 twice-partitions are: %e A279786 ((5)), ((4)(1)), ((3)(2)), ((3)(11)), ((22)(1)), %e A279786 ((111)(2)), ((111)(11)), ((1111)(1)), ((11111)). %p A279786 b:= proc(n, i) option remember; %p A279786 `if`(n>i*(i+1)/2, 0, `if`(n=0, 1, b(n, i-1)+ %p A279786 `if`(i>n, 0, numtheory[tau](i)*b(n-i, i-1)))) %p A279786 end: %p A279786 a:= n-> b(n$2): %p A279786 seq(a(n), n=0..70); # _Alois P. Heinz_, Dec 20 2016 %t A279786 nn=20;CoefficientList[Series[Product[(1+DivisorSigma[0,n]x^n),{n,nn}],{x,0,nn}],x] %Y A279786 Cf. A000005, A000009, A063834. %K A279786 nonn %O A279786 0,3 %A A279786 _Gus Wiseman_, Dec 18 2016