This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A279788 #10 Dec 21 2016 18:55:52 %S A279788 1,1,2,3,4,4,10,6,12,17,21,13,57,19,49,87,86,39,240,55,279,330,235, %T A279788 105,1141,386,491,1217,1461,257,4804,341,2968,4225,1958,5898,18961, %U A279788 761,3782,15007,30572,1261,66245,1611,32523,106951,13122,2591,283013,81390,182873 %N A279788 Twice partitioned numbers where the first partition is constant and the latter partitions are strict. %H A279788 Alois P. Heinz, <a href="/A279788/b279788.txt">Table of n, a(n) for n = 0..10000</a> %H A279788 Gus Wiseman, <a href="/A063834/a063834.txt">Sequences enumerating triangles of integer partitions</a> %e A279788 The a(6)=10 twice-partitions are: %e A279788 ((6)), ((51)), ((42)), ((3)(3)), ((3)(21)), ((21)(3)), %e A279788 ((321)), ((2)(2)(2)), ((21)(21)), ((1)(1)(1)(1)(1)(1)). %p A279788 with(numtheory): %p A279788 b:= proc(n) option remember; `if`(n=0, 1, add(add( %p A279788 `if`(d::odd, d, 0), d=divisors(j))*b(n-j), j=1..n)/n) %p A279788 end: %p A279788 a:= proc(n) option remember; `if`(n=0, 1, %p A279788 add(b(n/d)^d, d=divisors(n))) %p A279788 end: %p A279788 seq(a(n), n=0..70); # _Alois P. Heinz_, Dec 20 2016 %t A279788 Table[DivisorSum[n,PartitionsQ[n/#]^#&],{n,20}] %Y A279788 Cf. A000005, A000009, A018818, A063834, A279787. %K A279788 nonn %O A279788 0,3 %A A279788 _Gus Wiseman_, Dec 18 2016