cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279788 Twice partitioned numbers where the first partition is constant and the latter partitions are strict.

This page as a plain text file.
%I A279788 #10 Dec 21 2016 18:55:52
%S A279788 1,1,2,3,4,4,10,6,12,17,21,13,57,19,49,87,86,39,240,55,279,330,235,
%T A279788 105,1141,386,491,1217,1461,257,4804,341,2968,4225,1958,5898,18961,
%U A279788 761,3782,15007,30572,1261,66245,1611,32523,106951,13122,2591,283013,81390,182873
%N A279788 Twice partitioned numbers where the first partition is constant and the latter partitions are strict.
%H A279788 Alois P. Heinz, <a href="/A279788/b279788.txt">Table of n, a(n) for n = 0..10000</a>
%H A279788 Gus Wiseman, <a href="/A063834/a063834.txt">Sequences enumerating triangles of integer partitions</a>
%e A279788 The a(6)=10 twice-partitions are:
%e A279788 ((6)), ((51)), ((42)), ((3)(3)), ((3)(21)), ((21)(3)),
%e A279788 ((321)), ((2)(2)(2)), ((21)(21)), ((1)(1)(1)(1)(1)(1)).
%p A279788 with(numtheory):
%p A279788 b:= proc(n) option remember; `if`(n=0, 1, add(add(
%p A279788       `if`(d::odd, d, 0), d=divisors(j))*b(n-j), j=1..n)/n)
%p A279788     end:
%p A279788 a:= proc(n) option remember; `if`(n=0, 1,
%p A279788       add(b(n/d)^d, d=divisors(n)))
%p A279788     end:
%p A279788 seq(a(n), n=0..70);  # _Alois P. Heinz_, Dec 20 2016
%t A279788 Table[DivisorSum[n,PartitionsQ[n/#]^#&],{n,20}]
%Y A279788 Cf. A000005, A000009, A018818, A063834, A279787.
%K A279788 nonn
%O A279788 0,3
%A A279788 _Gus Wiseman_, Dec 18 2016