This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A279789 #19 May 23 2019 08:55:13 %S A279789 1,1,3,3,8,3,17,3,30,12,41,3,130,3,137,45,359,3,656,3,1306,141,2057,3, %T A279789 5446,36,8201,544,18610,3,34969,3,72385,2061,131081,165,290362,3, %U A279789 524297,8205,1109206,3,2130073,3,4371490,33594,8388617,3,17445321,132,33556496 %N A279789 Number of ways to choose a constant partition of each part of a constant partition of n. %C A279789 Also number of ways to choose a divisor d|n and then a sequence of n/d divisors of d. %H A279789 Alois P. Heinz, <a href="/A279789/b279789.txt">Table of n, a(n) for n = 0..6643</a> %H A279789 Gus Wiseman, <a href="/A063834/a063834.txt">Sequences enumerating triangles of integer partitions</a> %F A279789 a(n) = Sum_{d|n} tau(n/d)^d for n > 0. - _Andrew Howroyd_, Aug 26 2018 %F A279789 G.f.: 1 + Sum_{k>=1} tau(k)*x^k/(1 - tau(k)*x^k). - _Ilya Gutkovskiy_, May 23 2019 %F A279789 a(n) = 3 <=> n is prime <=> n in { A000040 }. - _Alois P. Heinz_, May 23 2019 %e A279789 The a(6)=17 twice-constant partitions are: %e A279789 ((6)), %e A279789 ((3)(3)), ((33)), %e A279789 ((3)(111)), ((111)(3)), %e A279789 ((2)(2)(2)), ((222)), %e A279789 ((2)(2)(11)), ((2)(11)(2)), ((11)(2)(2)), %e A279789 ((2)(11)(11)), ((11)(2)(11)), ((11)(11)(2)), %e A279789 ((1)(1)(1)(1)(1)(1)), ((11)(11)(11)), ((111)(111)), ((111111)). %p A279789 with(numtheory): %p A279789 a:= proc(n) option remember; `if`(n=0, 1, %p A279789 add(tau(n/d)^d, d=divisors(n))) %p A279789 end: %p A279789 seq(a(n), n=0..70); # _Alois P. Heinz_, Dec 20 2016 %t A279789 nn=20;Table[DivisorSum[n,Power[DivisorSigma[0,#],n/#]&],{n,nn}] %o A279789 (PARI) a(n)=if(n==0, 1, sumdiv(n, d, numdiv(n/d)^d)) \\ _Andrew Howroyd_, Aug 26 2018 %Y A279789 Cf: A000005 (tau), A000040, A018818, A063834, A260685, A279375. %K A279789 nonn %O A279789 0,3 %A A279789 _Gus Wiseman_, Dec 18 2016