This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A279820 #22 Apr 18 2017 16:32:33 %S A279820 1,2,3,1,4,1,5,2,5,1,2,6,1,3,7,1,3,7,2,4,8,2,1,3,9,2,1,4,9,3,1,4,10,3, %T A279820 1,5,11,3,2,4,11,3,1,2,5,12,3,1,2,5,13,3,1,2,6,13,4,1,3,5,14,4,1,3,6, %U A279820 15,3,2,3,6,15,4,2,1,2,7,16,4,2,1,3,6,17,4,2,1,3,7,17,5,2,1,3,7,18,4,3,1,3,8,19,4,3,1,4,7 %N A279820 Irregular triangle read by rows in which T(n,k) is the number of cells in the k-th horizontal bar of the n-th row of a diagram which is similar to the diagram of A237591, but here the even-indexed zig-zag paths are in the right hand part of the structure. %e A279820 Triangle begins: %e A279820 1; %e A279820 2; %e A279820 3, 1; %e A279820 4, 1; %e A279820 5, 2; %e A279820 5, 1, 2; %e A279820 6, 1, 3; %e A279820 7, 1, 3: %e A279820 7, 2, 4; %e A279820 8, 2, 1, 3; %e A279820 9, 2, 1, 4; %e A279820 ... %e A279820 Illustration of initial terms: %e A279820 Row _ %e A279820 1 _|1| %e A279820 2 _|2 |_ %e A279820 3 _|3 |1| %e A279820 4 _|4 |1|_ %e A279820 5 _|5 _| 2| %e A279820 6 _|5 |1| 2|_ %e A279820 7 _|6 |1| 3| %e A279820 8 _|7 _|1| 3|_ %e A279820 9 _|7 |2 |_ 4| %e A279820 10 _|8 |2 |1| 3|_ %e A279820 11 _|9 _|2 |1| 4| %e A279820 12 _|9 |3 |1| 4|_ %e A279820 13 _|10 |3 |1|_ 5| %e A279820 14 _|11 _|3 _| 2| 4|_ %e A279820 15 _|11 |3 |1| 2| 5| %e A279820 16 _|12 |3 |1| 2| 5|_ %e A279820 17 _|13 _|3 |1| 2|_ 6| %e A279820 18 _|13 |4 |1| 3| 5|_ %e A279820 19 _|14 |4 _|1| 3| 6| %e A279820 20 _|15 _|3 |2 |_ 3| 6|_ %e A279820 21 |15 |4 |2 |1| 2| 7| %e A279820 ... %e A279820 For n = 6 the 6th row of the diagram has three horizontal bars (or parts) that contain 5, 1 and 2 cells respectively, so the 6th row of the triangle is [5, 1, 2]. %e A279820 Note that the number of horizontal line segments in the n-th row of the structure equals A001227(n), the number of odd divisors of n. %Y A279820 Row sums give A001651. %Y A279820 Row n has length A003056(n) hence column k starts in row A000217(k) %Y A279820 Cf. A001227, A196020, A235791, A236104, A237048, A237591, A237593, A245092, A259176, A261699, A262626. %K A279820 nonn,tabf %O A279820 1,2 %A A279820 _Omar E. Pol_, Dec 19 2016