cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279820 Irregular triangle read by rows in which T(n,k) is the number of cells in the k-th horizontal bar of the n-th row of a diagram which is similar to the diagram of A237591, but here the even-indexed zig-zag paths are in the right hand part of the structure.

This page as a plain text file.
%I A279820 #22 Apr 18 2017 16:32:33
%S A279820 1,2,3,1,4,1,5,2,5,1,2,6,1,3,7,1,3,7,2,4,8,2,1,3,9,2,1,4,9,3,1,4,10,3,
%T A279820 1,5,11,3,2,4,11,3,1,2,5,12,3,1,2,5,13,3,1,2,6,13,4,1,3,5,14,4,1,3,6,
%U A279820 15,3,2,3,6,15,4,2,1,2,7,16,4,2,1,3,6,17,4,2,1,3,7,17,5,2,1,3,7,18,4,3,1,3,8,19,4,3,1,4,7
%N A279820 Irregular triangle read by rows in which T(n,k) is the number of cells in the k-th horizontal bar of the n-th row of a diagram which is similar to the diagram of A237591, but here the even-indexed zig-zag paths are in the right hand part of the structure.
%e A279820 Triangle begins:
%e A279820 1;
%e A279820 2;
%e A279820 3, 1;
%e A279820 4, 1;
%e A279820 5, 2;
%e A279820 5, 1, 2;
%e A279820 6, 1, 3;
%e A279820 7, 1, 3:
%e A279820 7, 2, 4;
%e A279820 8, 2, 1, 3;
%e A279820 9, 2, 1, 4;
%e A279820 ...
%e A279820 Illustration of initial terms:
%e A279820 Row                                           _
%e A279820 1                                           _|1|
%e A279820 2                                         _|2  |_
%e A279820 3                                       _|3    |1|
%e A279820 4                                     _|4      |1|_
%e A279820 5                                   _|5       _|  2|
%e A279820 6                                 _|5        |1|  2|_
%e A279820 7                               _|6          |1|    3|
%e A279820 8                             _|7           _|1|    3|_
%e A279820 9                           _|7            |2  |_     4|
%e A279820 10                        _|8              |2  |1|    3|_
%e A279820 11                      _|9               _|2  |1|      4|
%e A279820 12                    _|9                |3    |1|      4|_
%e A279820 13                  _|10                 |3    |1|_       5|
%e A279820 14                _|11                  _|3   _|  2|      4|_
%e A279820 15              _|11                   |3    |1|  2|        5|
%e A279820 16            _|12                     |3    |1|  2|        5|_
%e A279820 17          _|13                      _|3    |1|  2|_         6|
%e A279820 18        _|13                       |4      |1|    3|        5|_
%e A279820 19      _|14                         |4     _|1|    3|          6|
%e A279820 20    _|15                          _|3    |2  |_   3|          6|_
%e A279820 21   |15                           |4      |2  |1|  2|            7|
%e A279820 ...
%e A279820 For n = 6 the 6th row of the diagram has three horizontal bars (or parts) that contain 5, 1 and 2 cells respectively, so the 6th row of the triangle is [5, 1, 2].
%e A279820 Note that the number of horizontal line segments in the n-th row of the structure equals A001227(n), the number of odd divisors of n.
%Y A279820 Row sums give A001651.
%Y A279820 Row n has length A003056(n) hence column k starts in row A000217(k)
%Y A279820 Cf. A001227, A196020, A235791, A236104, A237048, A237591, A237593, A245092, A259176, A261699, A262626.
%K A279820 nonn,tabf
%O A279820 1,2
%A A279820 _Omar E. Pol_, Dec 19 2016