This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A279848 #23 Jan 02 2017 19:54:36 %S A279848 1,1,1,1,1,1,2,1,1,1,2,2,1,1,2,1,1,3,1,2,2,2,2,2,2,2,2,1,3,4,4,2,3,3, %T A279848 3,3,3,3,4,4,4,4,3 %N A279848 Partition an n X n square into multiple integer-sided rectangles where no one is a translation of any other. a(n) is ceiling(n/log(n)) - the least possible difference between the largest and smallest area. %C A279848 If ceiling(n/log(n)) is an upper bound for the Mondrian Art Problem variant (A279596), a(n) is the amount by which the optimal value beats the upper bound. %C A279848 Terms a(3) to a(45) verified optimal by R. Gerbicz. %C A279848 Term a(103) is at least 9, defect 14 (630-616) with 17 rectangles. %C A279848 Best values known for a(46) to a(96): 3, 1, 2, 1, 1, 5, 2, 2, 1, 2, 2, 1, 1, 0, 3, 0, 2, 1, 2, 0, 0, 1, 1, 1, 1, 0, 1, 1, 4, 1, 0, 2, 0, 3, 1, 4, 3, 1, 1, 4, 2, 3, 1, 0, 4, 4, 0, 1, 1, 0, 0. %H A279848 Mersenneforum.org puzzles, <a href="http://mersenneforum.org/showthread.php?t=21775">Mondrian art puzzles</a>. %H A279848 Ed Pegg Jr, <a href="http://demonstrations.wolfram.com/MondrianArtProblem/">Mondrian Art Problem</a>. %H A279848 Ed Pegg Jr, <a href="http://math.stackexchange.com/questions/2041189/mondrian-art-problem-upper-bound-for-defect">Mondrian Art Problem Upper Bound for defect</a>. %Y A279848 Cf. A278970, A276523, A279596. %K A279848 hard,more,nonn %O A279848 3,7 %A A279848 _Ed Pegg Jr_, Dec 21 2016 %E A279848 a(28)-a(45) from _Robert Gerbicz_, Jan 01 2017