cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279861 Number of transitive finitary sets with n brackets. Number of transitive rooted identity trees with n nodes.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 2, 1, 2, 2, 2, 5, 4, 6, 8, 10, 14, 23, 26, 34, 46, 64, 81, 115, 158, 199, 277, 376, 505, 684, 934, 1241, 1711, 2300, 3123, 4236, 5763, 7814, 10647, 14456, 19662
Offset: 1

Views

Author

Gus Wiseman, Dec 21 2016

Keywords

Comments

A finitary set is transitive if every element is also a subset. Transitive sets are also called full sets.

Examples

			Sequence of transitive finitary sets begins:
1  ()
2  (())
4  (()(()))
7  (()(())((())))
8  (()(())(()(())))
11 (()(())((()))(((()))))
   (()(())((()))(()(())))
12 (()(())((()))(()((()))))
13 (()(())((()))((())((()))))
   (()(())(()(()))((()(()))))
14 (()(())((()))(()(())((()))))
   (()(())(()(()))(()(()(()))))
15 (()(())((()))(((())))(()(())))
   (()(())(()(()))((())(()(()))))
16 (()(())((()))(((())))((((())))))
   (()(())((()))(((())))(()((()))))
   (()(())((()))(()(()))(()((()))))
   (()(())((()))(()(()))((()(()))))
   (()(())(()(()))(()(())(()(()))))
17 (()(())((()))(((())))(()(((())))))
   (()(())((()))(((())))((())((()))))
   (()(())((()))(()(()))(()(()(()))))
   (()(())((()))(()(()))((())((()))))
18 (()(())((()))(((())))((())(((())))))
   (()(())((()))(((())))(()(())((()))))
   (()(())((()))(()(()))((())(()(()))))
   (()(())((()))(()(()))(()(())((()))))
   (()(())((()))((()((()))))(()((()))))
   (()(())((()))(()((())))((())((()))))
		

Crossrefs

Programs

  • Mathematica
    transfins[n_]:=transfins[n]=If[n===1,{{}},Select[Union@@FixedPointList[Complement[Union@@Function[fin,Cases[Complement[Subsets[fin],fin],sub_:>With[{nov=Sort[Append[fin,sub]]},nov/;Count[nov,_List,{0,Infinity}]<=n]]]/@#,#]&,Array[transfins,n-1,1,Union]],Count[#,_List,{0,Infinity}]===n&]];
    Table[Length[transfins[n]],{n,20}]