A279861 Number of transitive finitary sets with n brackets. Number of transitive rooted identity trees with n nodes.
1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 2, 1, 2, 2, 2, 5, 4, 6, 8, 10, 14, 23, 26, 34, 46, 64, 81, 115, 158, 199, 277, 376, 505, 684, 934, 1241, 1711, 2300, 3123, 4236, 5763, 7814, 10647, 14456, 19662
Offset: 1
Keywords
Examples
Sequence of transitive finitary sets begins: 1 () 2 (()) 4 (()(())) 7 (()(())((()))) 8 (()(())(()(()))) 11 (()(())((()))(((())))) (()(())((()))(()(()))) 12 (()(())((()))(()((())))) 13 (()(())((()))((())((())))) (()(())(()(()))((()(())))) 14 (()(())((()))(()(())((())))) (()(())(()(()))(()(()(())))) 15 (()(())((()))(((())))(()(()))) (()(())(()(()))((())(()(())))) 16 (()(())((()))(((())))((((()))))) (()(())((()))(((())))(()((())))) (()(())((()))(()(()))(()((())))) (()(())((()))(()(()))((()(())))) (()(())(()(()))(()(())(()(())))) 17 (()(())((()))(((())))(()(((()))))) (()(())((()))(((())))((())((())))) (()(())((()))(()(()))(()(()(())))) (()(())((()))(()(()))((())((())))) 18 (()(())((()))(((())))((())(((()))))) (()(())((()))(((())))(()(())((())))) (()(())((()))(()(()))((())(()(())))) (()(())((()))(()(()))(()(())((())))) (()(())((()))((()((()))))(()((())))) (()(())((()))(()((())))((())((()))))
Links
- Wikipedia, Transitive set
- Gus Wiseman, Transitive rooted identity trees example n=23
Programs
-
Mathematica
transfins[n_]:=transfins[n]=If[n===1,{{}},Select[Union@@FixedPointList[Complement[Union@@Function[fin,Cases[Complement[Subsets[fin],fin],sub_:>With[{nov=Sort[Append[fin,sub]]},nov/;Count[nov,_List,{0,Infinity}]<=n]]]/@#,#]&,Array[transfins,n-1,1,Union]],Count[#,_List,{0,Infinity}]===n&]]; Table[Length[transfins[n]],{n,20}]
Comments