A279863 Number of maximal transitive finitary sets with n brackets.
0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 2, 2, 1, 1, 4, 3, 4, 2, 5, 6, 10, 8, 11, 11, 20, 22, 29, 36, 45, 53, 77, 83, 108, 141, 172, 208, 274, 323
Offset: 1
Keywords
Examples
The a(23)=3 maximal transitive finitary sets are: (()(())(()(()))((())(()(())))(()(())(()(())))), (()(())((()))(((())))(()((())))(()(())((())))), (()(())((()))(()(()))(()((())))(()(())((())))).
Links
- Gus Wiseman, Maximal transitive identity trees up to n=25
Programs
-
Mathematica
maxtransfins[n_]:=If[n===1,{},Select[Union@@FixedPointList[Complement[Union@@Function[fin,Cases[Complement[Subsets[fin],fin],sub_:>With[{nov=Sort[Append[fin,sub]]},nov/;Count[Union[nov,{Union@@nov}],_List,{0,Infinity}]<=n]]]/@#,#]&,{{}}],And[Count[#,_List,{0,Infinity}]===n,MemberQ[#,Union@@#]]&]]; Table[Length[maxtransfins[n]],{n,20}]
Comments