cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279863 Number of maximal transitive finitary sets with n brackets.

Original entry on oeis.org

0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 2, 2, 1, 1, 4, 3, 4, 2, 5, 6, 10, 8, 11, 11, 20, 22, 29, 36, 45, 53, 77, 83, 108, 141, 172, 208, 274, 323
Offset: 1

Views

Author

Gus Wiseman, Dec 21 2016

Keywords

Comments

A finitary set is transitive if every element is also a subset. A set system is maximal if the union is also a member.

Examples

			The a(23)=3 maximal transitive finitary sets are:
(()(())(()(()))((())(()(())))(()(())(()(())))),
(()(())((()))(((())))(()((())))(()(())((())))),
(()(())((()))(()(()))(()((())))(()(())((())))).
		

Crossrefs

Programs

  • Mathematica
    maxtransfins[n_]:=If[n===1,{},Select[Union@@FixedPointList[Complement[Union@@Function[fin,Cases[Complement[Subsets[fin],fin],sub_:>With[{nov=Sort[Append[fin,sub]]},nov/;Count[Union[nov,{Union@@nov}],_List,{0,Infinity}]<=n]]]/@#,#]&,{{}}],And[Count[#,_List,{0,Infinity}]===n,MemberQ[#,Union@@#]]&]];
    Table[Length[maxtransfins[n]],{n,20}]