cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279864 Irregular triangle read by rows: the n-th row corresponds to the natural numbers not exceeding A002110(n) and divisible by the n-th prime but not by a smaller prime.

Original entry on oeis.org

2, 3, 5, 25, 7, 49, 77, 91, 119, 133, 161, 203, 11, 121, 143, 187, 209, 253, 319, 341, 407, 451, 473, 517, 583, 649, 671, 737, 781, 803, 869, 913, 979, 1067, 1111, 1133, 1177, 1199, 1243, 1331, 1397, 1441, 1507, 1529, 1573, 1639, 1661, 1727, 1793, 1837, 1859
Offset: 1

Views

Author

Rémy Sigrist, Dec 21 2016

Keywords

Comments

The n-th row has A005867(n-1) terms.
The n-th row starts with the n-th prime.
The terms of this sequence appear, in that order, while applying the sieve of Eratosthenes; the n-th rows matches the first A005867(n-1) terms of the n-th row of A083140.
Any number n>1 can be uniquely written as n = T(i,j)+k*A002110(i) (with k>=0); in that case:
- i = A055396(n),
- k = floor( (n-1)/A002110(A055396(n)) ).
This sequence corresponds to the numbers n>1 such that n <= A002110(A055396(n)).
Let S(i,j) = { T(i,j)+k*A002110(i) with k>=0 }, then:
- For any n>0, { S(n,j) } is a partition of the numbers divisible by the n-th prime but not by a smaller prime,
- For any n>0, { S(i,j) such that i<=n } is a partition of the numbers divisible by the n-th prime,
- { S(i,j) } is a partition of the numbers > 1.

Examples

			From _M. F. Hasler_, May 16 2017: (Start)
The triangle starts
2;
3;
5, 25;
7, 49, 77, 91, 119, 133, 161, 203;
11, 121, 143, 187, 209, 253, 319, 341, 407, 451, 473, 517, 583, 649, 671, 737, 781, 803, 869, 913, 979, 1067, 1111, 1133, 1177, 1199, 1243, 1331, 1397, 1441, 1507, 1529, 1573, 1639, 1661, 1727, 1793, 1837, 1859, 1903, 1969, 1991, 2057, 2101, 2123, 2167, 2189, 2299;
... (End)
		

Crossrefs

Programs

  • Mathematica
    Table[Function[p, Select[Range[Times @@ p], Function[k, And[Divisible[k, Last@ p], Total@ Boole@ Divisible[k, Most@ p] == 0]]]]@ Prime@ Range@ n, {n, 5}] // Flatten (* Michael De Vlieger, Dec 21 2016 *)
    a[1] = {2}; a[2] = {3}; t[2] = {1, 5}; a[n_] := a[n] = Prime[n]*t[n - 1]; t[x_] := t[x] = Complement[Flatten[Table[k*Product[Prime[j], {j, x - 1}] + t[x - 1], {k, 0, Prime[x] - 1}]], a[x]]; Flatten[Table[a[n], {n, 6}]] (* L. Edson Jeffery, May 16 2017 *)
  • PARI
    pp=1; for (r=1, 5, forstep(n=prime(r), pp*prime(r), prime(r), if (gcd(n,pp)==1, print1 (n ", "))); pp *= prime(r); print(""))
    
  • PARI
    A279864_row(r,p=prime(r),P=prod(i=1,r-1,prime(i)))=select(n->gcd(n,P)==1,p*[1..P])  \\ M. F. Hasler, May 16 2017

Formula

T(n,1) = A000040(n) for any n>0.
T(n,k) = A083140(n,k) for any n>0 and k<=A005867(n-1).