A279864 Irregular triangle read by rows: the n-th row corresponds to the natural numbers not exceeding A002110(n) and divisible by the n-th prime but not by a smaller prime.
2, 3, 5, 25, 7, 49, 77, 91, 119, 133, 161, 203, 11, 121, 143, 187, 209, 253, 319, 341, 407, 451, 473, 517, 583, 649, 671, 737, 781, 803, 869, 913, 979, 1067, 1111, 1133, 1177, 1199, 1243, 1331, 1397, 1441, 1507, 1529, 1573, 1639, 1661, 1727, 1793, 1837, 1859
Offset: 1
Examples
From _M. F. Hasler_, May 16 2017: (Start) The triangle starts 2; 3; 5, 25; 7, 49, 77, 91, 119, 133, 161, 203; 11, 121, 143, 187, 209, 253, 319, 341, 407, 451, 473, 517, 583, 649, 671, 737, 781, 803, 869, 913, 979, 1067, 1111, 1133, 1177, 1199, 1243, 1331, 1397, 1441, 1507, 1529, 1573, 1639, 1661, 1727, 1793, 1837, 1859, 1903, 1969, 1991, 2057, 2101, 2123, 2167, 2189, 2299; ... (End)
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..6300 [First 7 rows]
Programs
-
Mathematica
Table[Function[p, Select[Range[Times @@ p], Function[k, And[Divisible[k, Last@ p], Total@ Boole@ Divisible[k, Most@ p] == 0]]]]@ Prime@ Range@ n, {n, 5}] // Flatten (* Michael De Vlieger, Dec 21 2016 *) a[1] = {2}; a[2] = {3}; t[2] = {1, 5}; a[n_] := a[n] = Prime[n]*t[n - 1]; t[x_] := t[x] = Complement[Flatten[Table[k*Product[Prime[j], {j, x - 1}] + t[x - 1], {k, 0, Prime[x] - 1}]], a[x]]; Flatten[Table[a[n], {n, 6}]] (* L. Edson Jeffery, May 16 2017 *)
-
PARI
pp=1; for (r=1, 5, forstep(n=prime(r), pp*prime(r), prime(r), if (gcd(n,pp)==1, print1 (n ", "))); pp *= prime(r); print(""))
-
PARI
A279864_row(r,p=prime(r),P=prod(i=1,r-1,prime(i)))=select(n->gcd(n,P)==1,p*[1..P]) \\ M. F. Hasler, May 16 2017
Comments