This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A279887 #74 Apr 04 2024 12:46:03 %S A279887 1,1,4,16,153,71838,5965398,2614508085,9822629511079, %T A279887 28751930151895611,162231215752303027270,32813942272624544838651213, %U A279887 1257159787425487037702548758466 %N A279887 Number of tilings of a sphinx of order n by elementary sphinxes (i.e., sphinxes of order 1). %C A279887 Sphinx tilings are, by convention, understood to be improper tilings composed of two elementary shapes, order-1 sphinxes, that are mirror images of one another. In other words, one can prove that the tiling of an order-n sphinx requires both L-sphinxes and R-sphinxes (each composed of six equilateral triangles) for any n>1. The sequence terms are based on an initial search-tree method by G. Huber, confirmed and extended by _Walter Trump_ using backtracking and a bit-vector method. %C A279887 Least-squares fitting indicates a growth law in the form of an exponential of a quadratic in n (i.e., proportional to g^(area), where g is a constant). %C A279887 a(9) from analysis of the tilings and associated seam factor of two hemisphinxes of order 9 (_Walter Trump_, personal communication). - _Greg Huber_, Mar 10 2017 %C A279887 a(10), a(11) from double hemisphinx method described above. %D A279887 A. Martin, "The Sphinx Task Centre Problem" in C. Pritchard (ed.) The Changing Shape of Geometry, Cambridge Univ. Press, 2003, 371-378. %H A279887 Greg Huber, Craig Knecht, Walter Trump, and Robert M. Ziff, <a href="https://arxiv.org/abs/2304.14388">Riddles of the sphinx tilings</a>, arXiv:2304.14388 [cond-mat.stat-mech], 2023. %H A279887 Greg Huber, Craig Knecht, Walter Trump, and Robert M. Ziff, <a href="http://dx.doi.org/10.1103/PhysRevResearch.6.013227">Entropy and chirality in sphinx tilings</a>, Phys. Rev. Res., 6 (2024), 013227. %H A279887 J.-Y. Lee and R. V. Moody, <a href="https://arxiv.org/abs/math/0002019">Lattice Substitution Systems and Model Sets</a>, arXiv:math/0002019 [math.MG], 2000. %H A279887 J.-Y. Lee and R. V. Moody, <a href="https://doi.org/10.1007/s004540010083">Lattice Substitution Systems and Model Sets</a>, Discrete Comput. Geom., 25 (2001), 173-201. %H A279887 Mathematics Task Centre, <a href="http://www.mathematicscentre.com/taskcentre/166sfinx.htm">Task166</a>. %H A279887 Walter Trump, <a href="/A279887/a279887.pdf">The Dangler Method</a> %H A279887 University of Bielefeld Tilings, <a href="http://tilings.math.uni-bielefeld.de/substitution/sphinx/">Sphinx</a>. %H A279887 Wikipedia, <a href="https://en.wikipedia.org/wiki/Sphinx_tiling">Sphinx tiling</a>. %H A279887 Wikiwand, <a href="http://www.wikiwand.com/en/Sphinx_tiling">Sphinx Tiling</a>. %e A279887 For n=2, a(2)=1 and this single tiling of an order-2 L-sphinx with three elementary R-sphinxes and one elementary L-sphinx is shown in the Wikiwand link. %Y A279887 Cf. A004003. %K A279887 nonn,more %O A279887 1,3 %A A279887 _Greg Huber_, Dec 21 2016 %E A279887 a(9) from _Greg Huber_, Mar 10 2017 %E A279887 a(10)-a(11) from _Greg Huber_, May 10 2017 %E A279887 a(11) corrected by _Walter Trump_, Feb 25 2022 %E A279887 a(12)-a(13) from _Walter Trump_, Feb 25 2022