A279907 Triangle read by rows: T(n,k) is the smallest power of n that is divisible by k, or -1 if no such power exists.
0, 0, 1, 0, -1, 1, 0, 1, -1, 1, 0, -1, -1, -1, 1, 0, 1, 1, 2, -1, 1, 0, -1, -1, -1, -1, -1, 1, 0, 1, -1, 1, -1, -1, -1, 1, 0, -1, 1, -1, -1, -1, -1, -1, 1, 0, 1, -1, 2, 1, -1, -1, 3, -1, 1, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 0, 1, 1, 1, -1, 1, -1, 2, 2, -1, -1, 1, 0, -1, -1, -1, -1, -1, -1
Offset: 1
Examples
The triangle T(n,k) begins (with -1 shown as "." for clarity): n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ... 1: 0 2: 0 1 3: 0 . 1 4: 0 1 . 1 5: 0 . . . 1 6: 0 1 1 2 . 1 7: 0 . . . . . 1 8: 0 1 . 1 . . . 1 9: 0 . 1 . . . . . 1 10: 0 1 . 2 1 . . 3 . 1 11: 0 . . . . . . . . . 1 12: 0 1 1 1 . 1 . 2 2 . . 1 13: 0 . . . . . . . . . . . 1 14: 0 1 . 2 . . 1 3 . . . . . 1 15: 0 . 1 . 1 . . . 2 . . . . . 1 ...
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..11325 (rows 1 <= n <= 150)
Crossrefs
Programs
-
Maple
f:= proc(n,k) local Fk,Fn,i; if k = 1 then return 0 fi; Fk:= ifactors(k)[2]; Fn:= map(t -> padic:-ordp(n,t[1]),Fk); if min(Fn) = 0 then -1 else max(seq(ceil(Fk[i,2]/Fn[i]),i=1..nops(Fk))) fi end proc: seq(seq(f(n,k),k=1..n),n=1..20); # Robert Israel, Dec 28 2016
-
Mathematica
Table[Boole[k == 1] + (Boole[#[[-1, 1]] == 1] (-1 + Length@ #) /. 0 -> -1) &@ NestWhileList[Function[s, {#1/s, s}]@ GCD[#1, #2] & @@ # &, {k, n}, And[First@ # != 1, ! CoprimeQ @@ #] &], {n, 16}, {k, n}] // Flatten (* or *) Table[SelectFirst[Range[0, Floor@ Log2@ n], PowerMod[n, #, k] == 0 &] /. k_ /; MissingQ@ k -> -1, {n, 12}, {k, n}] // TableForm (* Version 10.2 *)
Comments