A279935 Numbers n such that n + sopf(n) + rad(n) = m and m - sopf(m) - rad(m) = n, where sopf(n) is the sum of the distinct primes dividing n and rad(n) is the squarefree kernel of n.
3, 4, 75, 112, 2057, 9178, 29818, 73813, 138992, 240469, 531002, 661489, 716856, 763648, 905474, 1033909, 1395554, 1572001, 1605519, 1643372, 1661030, 1692277, 1705724, 2312593, 2864773, 2911839, 2928193, 2977676, 3114366, 3744951, 4035647, 4122178, 4227036, 5716177
Offset: 1
Examples
Prime factors of 9178 are 2, 13, 353: sopf(9178) = 2 + 13 + 353 = 368, rad(9178) = 2 * 13 * 353 = 9178 and 9178 + 368 + 9178 = 18724. Prime factors of 18724 are 2, 2, 31, 151: sopf(18724) = 2 + 31 + 151 = 184, rad(18724) = 2 * 31 * 151 = 9362 and 18724 - 184 - 9362 = 9178.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..145
Programs
-
Maple
with(numtheory): P:=proc(q) local a,b,c,k,n; for n from 1 to q do a:=ifactors(n)[2]; b:=mul(a[k][1],k=1..nops(a))+add(a[k][1],k=1..nops(a)); c:=n+b; a:=ifactors(c)[2]; b:=mul(a[k][1],k=1..nops(a))+add(a[k][1],k=1..nops(a)); d:=c-b; if d=n then print(n); fi; od; end: P(10^9);
-
Mathematica
f[n_] := Block[{pd = First@# & /@ FactorInteger@n}, Times @@ pd + Plus @@ pd]; fQ[n_] := n + f[n] - f[n + f[n]] == n; Select[ Range@ 1000000, fQ] (* Robert G. Wilson v, Dec 24 2016 *)