cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279944 Number of positions in the free pure symmetric multifunction in one symbol with j-number n.

This page as a plain text file.
%I A279944 #15 May 04 2018 22:42:22
%S A279944 1,3,5,5,7,7,9,4,7,9,11,6,9,11,13,7,8,11,13,15,9,10,13,15,9,17,6,11,
%T A279944 12,15,17,6,11,19,8,9,13,14,17,19,8,13,21,10,11,15,16,19,11,21,10,15,
%U A279944 23,12,13,17,18,21,13,23,12,17,25,7,14,15,19,20,23,15,25,14,19,27,9,16,17,21,22,25,9,17,27,16,21,29,11,18,19,23,24,27,11,19,29,18,23,31,13,11
%N A279944 Number of positions in the free pure symmetric multifunction in one symbol with j-number n.
%C A279944 A free pure symmetric multifunction in one symbol f in PSM(x) is either (case 1) f = the symbol x, or (case 2) f = an expression of the form h[g_1,...,g_k] where h is in PSM(x), each of the g_i for i=1..(k>0) is in PSM(x), and for i < j we have g_i <= g_j under a canonical total ordering of PSM(x), such as the Mathematica ordering of expressions. For a positive integer n we define a free pure symmetric multifunction j(n) by: j(1)=x; j(n>1) = j(h)[j(g_1),...,j(g_k)] where n = r(h)^(p(g_1)*...*p(g_k)-1). Here r(n) is the n-th number that is not a perfect power (A007916) and p(n) is the n-th prime number (A000040). See example. Then a(n) is the number of brackets [...] plus the number of x's in j(n).
%F A279944 a(A007916(h)^(A000040(g_1)*...*A000040(g_k)-1)) = 1 + a(h) + a(g_1) + ... + a(g_k).
%e A279944 The first 20 free pure symmetric multifunctions in x are:
%e A279944 j(1)  = j(1)            = x
%e A279944 j(2)  = j(1)[j(1)]      = x[x]
%e A279944 j(3)  = j(2)[j(1)]      = x[x][x]
%e A279944 j(4)  = j(1)[j(2)]      = x[x[x]]
%e A279944 j(5)  = j(3)[j(1)]      = x[x][x][x]
%e A279944 j(6)  = j(4)[j(1)]      = x[x[x]][x]
%e A279944 j(7)  = j(5)[j(1)]      = x[x][x][x][x]
%e A279944 j(8)  = j(1)[j(1),j(1)] = x[x,x]
%e A279944 j(9)  = j(2)[j(2)]      = x[x][x[x]]
%e A279944 j(10) = j(6)[j(1)]      = x[x[x]][x][x]
%e A279944 j(11) = j(7)[j(1)]      = x[x][x][x][x][x]
%e A279944 j(12) = j(8)[j(1)]      = x[x,x][x]
%e A279944 j(13) = j(9)[j(1)]      = x[x][x[x]][x]
%e A279944 j(14) = j(10)[j(1)]     = x[x[x]][x][x][x]
%e A279944 j(15) = j(11)[j(1)]     = x[x][x][x][x][x][x]
%e A279944 j(16) = j(1)[j(3)]      = x[x[x][x]]
%e A279944 j(17) = j(12)[j(1)]     = x[x,x][x][x]
%e A279944 j(18) = j(13)[j(1)]     = x[x][x[x]][x][x]
%e A279944 j(19) = j(14)[j(1)]     = x[x[x]][x][x][x][x]
%e A279944 j(20) = j(15)[j(1)]     = x[x][x][x][x][x][x][x].
%t A279944 nn=100;
%t A279944 radQ[n_]:=If[n===1,False,SameQ[GCD@@FactorInteger[n][[All,2]],1]];
%t A279944 rad[n_]:=rad[n]=If[n===0,1,NestWhile[#+1&,rad[n-1]+1,Not[radQ[#]]&]];
%t A279944 Set@@@Array[radPi[rad[#]]==#&,nn];
%t A279944 jfac[n_]:=With[{g=GCD@@FactorInteger[n+1][[All,2]]},JIX[radPi[Power[n+1,1/g]],Flatten[Cases[FactorInteger[g+1],{p_,k_}:>ConstantArray[PrimePi[p],k]]]]];
%t A279944 diwt[n_]:=If[n===1,1,Apply[1+diwt[#1]+Total[diwt/@#2]&,jfac[n-1]]];
%t A279944 Array[diwt,nn]
%Y A279944 Cf. A005043, A007916, A106490, A277564, A277615, A277996, A278028, A280000.
%Y A279944 Cf. A279984 (numbers j(n)[x]=j(prime(n))), A277576 (numbers j(n)=x[x][x][x]...), A058891 (numbers j(n)=x[x,...,x]), A279969 (numbers j(n)=x[x[...[x]]]).
%K A279944 nonn
%O A279944 1,2
%A A279944 _Gus Wiseman_, Dec 24 2016