cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279966 Square array read by antidiagonals upwards in which each term is the number of prior elements in the same row, column, diagonal, or antidiagonal that divide n; the array is seeded with an initial value a(1)=1.

This page as a plain text file.
%I A279966 #24 Jan 23 2017 13:10:13
%S A279966 1,1,2,2,2,4,2,5,1,5,2,5,2,5,4,5,0,4,1,9,2,5,0,6,6,3,4,6,2,7,1,6,4,6,
%T A279966 5,11,2,4,2,10,1,8,2,10,3,7,0,9,4,6,3,5,1,9,5,8,0,5,1,14,4,4,2,10,7,8,
%U A279966 2,4,2,11,3,16,3,6,7,8,5,10
%N A279966 Square array read by antidiagonals upwards in which each term is the number of prior elements in the same row, column, diagonal, or antidiagonal that divide n; the array is seeded with an initial value a(1)=1.
%C A279966 The patterns of values 2 and 0 in columns 1 and 2, respectively, of the triangle of sequence A279967 do not hold for this sequence, in addition, it appears that every column contains two 1's. - _Hartmut F. W. Hoft_, Jan 23 2017
%H A279966 Peter Kagey, <a href="/A279966/b279966.txt">Table of n, a(n) for n = 1..5000</a>
%e A279966 After the first 21 terms, the array looks like this:
%e A279966 1  2  4  5  4  2
%e A279966 1  2  1  5  9
%e A279966 2  5  2  1
%e A279966 2  5  4
%e A279966 2  0
%e A279966 5
%e A279966 ...
%e A279966 We have a(20) = 9 because 20 is divisible by a(2) = 1, a(5) = 2, a(9) = 1, a(10) = 5, a(14) = 5, a(15) = 4, a(16) = 5, a(18) = 4, and a(19) = 1.
%e A279966 Likewise, a(17) = 0 because no prior elements of the same row, column, diagonal, or antidiagonal divide 17. See A278436 for a list of indices for which a(n) = 0.
%e A279966 From _Hartmut F. W. Hoft_, Jan 23 2017: (Start)
%e A279966 Expanded triangle to the first 13 antidiagonals  (as in A279967)
%e A279966 .
%e A279966 1   2   4   5   4   2   6  11   3   5   8  10   1
%e A279966 1   2   1   5   9   4   5  10   9   7   5  18
%e A279966 2   5   2   1   3   6   2   1  10   8   2
%e A279966 2   5   4   6   4   8   5   2   7  10
%e A279966 2   0   6   6   1   3   4   6   3
%e A279966 5   0   1  10   6   4   3   5
%e A279966 5   7   2   4  14  16   5
%e A279966 2   4   9   1   3  16
%e A279966 2   0   5  11   2
%e A279966 7   0   2   4
%e A279966 8   4   4
%e A279966 2   9
%e A279966 2
%e A279966 (End)
%t A279966 (* printing of the triangle is commented out of function a279966[] *)
%t A279966 (* support functions are in A279967 *)
%t A279966 a279966[k_] := Module[{ut=upperTriangle[k], ms=Table[" ", {i, 1, k}, {j, 1, k}], h, pos, val, seqL={1}}, ms[[1, 1]]=1; For[h=2, h<=Length[ut], h++, pos=ut[[h]]; val=Length[Select[Map[ms[[Apply[Sequence, #]]]&, priorPos[pos]], #!=0 && Mod[seqPos[pos], #]==0&]]; AppendTo[seqL, val]; ms[[Apply[Sequence, pos]]]=val]; (* Print[TableForm[ms]]; *) seqL]
%t A279966 a279966[13] (* values in first 13 antidiagonals. *)
%t A279966 (* _Hartmut F. W. Hoft_, Jan 23 2017 *)
%Y A279966 Cf. A279967 for the related sequence which sums prior terms.
%Y A279966 Cf. A278436.
%Y A279966 Cf. A281533. - _Hartmut F. W. Hoft_, Jan 23 2017
%K A279966 nonn,tabl
%O A279966 1,3
%A A279966 _Alec Jones_, Dec 24 2016
%E A279966 Appended name with phrase as in A279967. - _Hartmut F. W. Hoft_, Jan 23 2017