A279978 Number of 2 X n 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.
0, 3, 9, 24, 62, 134, 277, 542, 1035, 1930, 3546, 6432, 11555, 20590, 36445, 64140, 112326, 195866, 340241, 589038, 1016671, 1749950, 3004610, 5147092, 8798911, 15012766, 25569393, 43477440, 73814414, 125140142, 211870477, 358260350
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..1..1..0. .0..1..0..1. .0..0..1..0. .0..1..1..0. .0..1..0..0 ..0..1..1..0. .0..1..1..1. .1..1..1..0. .0..0..0..1. .1..1..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 2 of A279977.
Formula
Empirical: a(n) = 5*a(n-1) - 7*a(n-2) - 2*a(n-3) + 10*a(n-4) - 2*a(n-5) - 5*a(n-6) + a(n-7) + a(n-8) for n>10.
Empirical g.f.: x^2*(3 - 6*x + 11*x^3 - 20*x^4 + 5*x^5 + 12*x^6 + 2*x^7 - 5*x^8) / ((1 - x)^2*(1 - x - x^2)^3). - Colin Barker, Feb 12 2019