cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279984 Positions of the prime numbers in the sequence of numbers that are not perfect powers (A007916).

This page as a plain text file.
%I A279984 #22 Oct 13 2024 11:16:43
%S A279984 1,2,3,5,7,9,12,14,18,22,24,28,32,34,38,43,49,51,56,60,62,68,71,77,85,
%T A279984 88,90,94,96,100,112,115,121,123,132,134,140,146,150,155,161,163,173,
%U A279984 175,178,180,192,203,206,208,212,218,220,229,234,240,246,248,254
%N A279984 Positions of the prime numbers in the sequence of numbers that are not perfect powers (A007916).
%H A279984 Hugo Pfoertner, <a href="/A279984/b279984.txt">Table of n, a(n) for n = 1..10000</a>
%F A279984 A007916(a(n)) = A000040(n).
%t A279984 nn=100;rads=Select[Range[2,nn],GCD@@FactorInteger[#][[All,2]]===1&];
%t A279984 Table[Position[rads,Prime[n]][[1,1]],{n,PrimePi[nn]}]
%o A279984 (PARI) lista(nn) = Vec(select(x->isprime(x), Vec(select(x->(!ispower(x)&&x>1), [1..nn])), 1)); \\ _Michel Marcus_, May 04 2018
%o A279984 (Python)
%o A279984 from sympy import prime, mobius, integer_nthroot
%o A279984 def A279984(n): return int((p:=prime(n))-1+sum(mobius(k)*(integer_nthroot(p,k)[0]-1) for k in range(2,p.bit_length()))) # _Chai Wah Wu_, Oct 12 2024
%Y A279984 Cf. A000040, A007916, A279944.
%K A279984 nonn
%O A279984 1,2
%A A279984 _Gus Wiseman_, Dec 24 2016