This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A280000 #8 Aug 19 2018 16:46:12 %S A280000 1,0,1,1,3,5,12,25,57,128,296,688,1618,3839,9170,22065,53370,129807, %T A280000 317080,777887,1915247,4731932,11726476,29143123,72614115,181363151, %U A280000 453975928,1138697689,2861607677,7204169689 %N A280000 Number of free pure symmetric multifunctions in one symbol with n positions. %C A280000 A free pure symmetric multifunction (PSM) in one symbol x is either (case 1) the symbol x, or (case 2) an expression of the form h[g_1,...,g_k] where h is a PSM in x, each of the g_i for i=1..(k>0) is a PSM in x, and for i < j we have g_i <= g_j under a canonical total ordering such as the Mathematica ordering. The number of positions in a PSM is the number of brackets [...] plus the number of x's. %H A280000 Andrew Howroyd, <a href="/A280000/b280000.txt">Table of n, a(n) for n = 1..200</a> %e A280000 Sequence of free pure symmetric multifunctions (second column) together with their numbers of positions (first column) and j-numbers (third column, see A279944 for details) begins: %e A280000 1 x 1 %e A280000 3 x[x] 2 %e A280000 4 x[x,x] 8 %e A280000 5 x[x][x] 3 %e A280000 5 x[x[x]] 4 %e A280000 5 x[x,x,x] 128 %e A280000 6 x[x,x][x] 12 %e A280000 6 x[x][x,x] 27 %e A280000 6 x[x,x[x]] 32 %e A280000 6 x[x,x,x,x] 32768 %e A280000 6 x[x[x,x]] 262144 %e A280000 7 x[x][x][x] 5 %e A280000 7 x[x[x]][x] 6 %e A280000 7 x[x][x[x]] 9 %e A280000 7 x[x[x][x]] 16 %e A280000 7 x[x[x[x]]] 64 %e A280000 7 x[x,x,x][x] 145 %e A280000 7 x[x,x][x,x] 1728 %e A280000 7 x[x,x,x[x]] 2048 %e A280000 7 x[x][x,x,x] 2187 %e A280000 7 x[x,x,x,x,x] 2147483648 %e A280000 7 x[x,x[x,x]] 137438953472 %e A280000 7 x[x[x,x,x]] 1378913...3030144 %t A280000 multing[t_,n_]:=Array[(t+#-1)/#&,n,1,Times]; %t A280000 a[n_]:=If[n===1,1,Sum[a[k]*Sum[Product[multing[a[First[s]],Length[s]],{s,Split[p]}],{p,IntegerPartitions[n-k-1]}],{k,1,n-2}]]; %t A280000 Array[a,15] %o A280000 (PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} %o A280000 seq(n)={my(v=[1]); for(n=2, n, my(t=EulerT(v)); v=concat(v, sum(k=1, n-2, v[k]*t[n-k-1]))); v} \\ _Andrew Howroyd_, Aug 19 2018 %Y A280000 Cf. A005043 (non-symmetric case), A279944. %K A280000 nonn %O A280000 1,5 %A A280000 _Gus Wiseman_, Dec 24 2016