cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280049 Canonical representation of n as a sum of distinct Jacobsthal numbers J(n) (A001045) (see Comments for details); also binary numbers that end in an even number of zeros.

Original entry on oeis.org

1, 11, 100, 101, 111, 1001, 1011, 1100, 1101, 1111, 10000, 10001, 10011, 10100, 10101, 10111, 11001, 11011, 11100, 11101, 11111, 100001, 100011, 100100, 100101, 100111, 101001, 101011, 101100, 101101, 101111, 110000, 110001, 110011, 110100, 110101, 110111
Offset: 1

Views

Author

N. J. A. Sloane, Dec 31 2016

Keywords

Comments

Every positive integer has a unique expression as a sum of distinct Jacobsthal numbers in which the index of the smallest summand is odd, with J(1) = 1 and J(2) = 1 both allowed. [Carlitz-Scoville-Hoggatt, 1972]. - Based on a comment in A001045 from Ira M. Gessel, Dec 31 2016.
The highest-order bits are on the left. Interpreting these as binary numbers we get A003159.

Examples

			9 = 5+3+1 = J(4)+J(3)+J(1) = 1101.
		

Crossrefs

Programs

  • Mathematica
    FromDigits[IntegerDigits[#, 2]] & /@ Select[Range[100], EvenQ[IntegerExponent[#, 2]] &] (* Amiram Eldar, Jul 14 2023 *)
  • PARI
    lista(kmax) = for(k = 1, kmax, if(!(valuation(k, 2)%2), print1(fromdigits(binary(k), 10), ", "))); \\ Amiram Eldar, Jul 14 2023
    
  • Python
    from itertools import count, islice
    def A280049_gen(): # generator of terms
        return map(lambda n:int(bin(n)[2:]),filter(lambda n:(n&-n).bit_length()&1,count(1)))
    A280049_list = list(islice(A280049_gen(),20)) # Chai Wah Wu, Mar 19 2024
    
  • Python
    def A280049(n):
        def f(x):
            c, s = n+x, bin(x)[2:]
            l = len(s)
            for i in range(l&1^1,l,2):
                c -= int(s[i])+int('0'+s[:i],2)
            return c
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return int(bin(m)[2:]) # Chai Wah Wu, Jan 30 2025

Formula

a(n) = A007088(A003159(n)). - Amiram Eldar, Jul 14 2023

Extensions

Corrected a(5), a(16) and more terms from Lars Blomberg, Jan 02 2017