This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A280056 #37 Aug 17 2025 03:05:51 %S A280056 0,0,0,8,48,144,360,720,1344,2240,3600,5400,7920,11088,15288,20384, %T A280056 26880,34560,44064,55080,68400,83600,101640,121968,145728,172224, %U A280056 202800,236600,275184,317520,365400,417600,476160,539648,610368,686664,771120,861840,961704,1068560,1185600 %N A280056 Number of 2 X 2 matrices with entries in {0,1,...,n} and even trace with no entries repeated. %C A280056 a(n) mod 8 = 0. %H A280056 Indranil Ghosh, <a href="/A280056/b280056.txt">Table of n, a(n) for n = 0..1000</a> %H A280056 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (2,2,-6,0,6,-2,-2,1). %F A280056 a(n) = ((-1)^n + 2*n^2 - 1)*(n-1)*(n-2)/4. %F A280056 From _Colin Barker_, Dec 25 2016: (Start) %F A280056 a(n) = (n^4 - 3*n^3 + 2*n^2)/2 for n even. %F A280056 a(n) = (n^4 - 3*n^3 + n^2 + 3*n - 2)/2 for n odd. %F A280056 a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) - 2*a(n-7) + a(n-8) for n>7. %F A280056 G.f.: 8*x^3*(1 + 3*x)*(1 + x + x^2) / ((1 - x )^5*(1 + x)^3). (End) %F A280056 These formulas are true. a(n) = ((-1)^n + 2*n^2 - 1)*(n-1)*(n-2)/4 = (n^2 - p(n))*C(n-1,2), where p(n) is the parity of n, i.e., p(n) = 0 if n is even and p(n) = 1 if n is odd. - _Chai Wah Wu_, Dec 25 2016 %F A280056 E.g.f.: (1/4)*((2 + 2*x + x^2)*exp(-x) + (-2 + 2*x - x^2 + 6*x^3 + 2*x^4)*exp(x)). - _David Radcliffe_, Aug 16 2025 %t A280056 Table[(1/4)*(n - 2)*(n - 1)*(2*n^2 - 1 + (-1)^n), {n, 0, 50}] (* _G. C. Greubel_, Dec 26 2016 *) %o A280056 (Python) %o A280056 def a(n): %o A280056 s=0 %o A280056 for a in range(0,n+1): %o A280056 for b in range(0,n+1): %o A280056 if a!=b: %o A280056 for c in range(0,n+1): %o A280056 if a!=c and b!=c: %o A280056 for d in range(0,n+1): %o A280056 if d!=a and d!=b and d!=c: %o A280056 if (a+d)%2==0: %o A280056 s+=1 %o A280056 return s %o A280056 for i in range(0,41): %o A280056 print(i, a(i)) %o A280056 (Python) %o A280056 def A280056(n): %o A280056 return (n**2 - (n % 2))*(n-1)*(n-2)//2 # _Chai Wah Wu_, Dec 25 2016 %o A280056 (PARI) concat(vector(3), Vec(8*x^3*(1 + 3*x)*(1 + x + x^2) / ((1 - x )^5*(1 + x)^3) + O(x^30))) \\ _Colin Barker_, Dec 25 2016 %Y A280056 Cf. A210378 (where the elements can be repeated). %K A280056 nonn,easy %O A280056 0,4 %A A280056 _Indranil Ghosh_, Dec 24 2016 %E A280056 Formulas corrected by _David Radcliffe_, Aug 16 2025