A280064 Number of n X 3 0..1 arrays with no element unequal to a strict majority of its horizontal, vertical and antidiagonal neighbors and with new values introduced in order 0 sequentially upwards.
1, 2, 5, 15, 39, 104, 281, 771, 2122, 5858, 16174, 44694, 123510, 341403, 943694, 2608709, 7211359, 19935055, 55108220, 152341402, 421132682, 1164181573, 3218268552, 8896600238, 24593808939, 67987267220, 187944382019, 519554527901
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0..0. .0..1..1. .0..1..1. .0..0..0. .0..0..0. .0..0..0. .0..0..0 ..0..0..0. .0..1..1. .0..1..1. .0..0..0. .0..0..0. .1..1..0. .0..0..0 ..0..1..1. .0..1..1. .0..0..1. .0..0..1. .1..1..0. .1..1..0. .1..1..1 ..1..1..1. .0..0..0. .0..0..1. .0..1..1. .1..1..0. .1..0..0. .1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 3 of A280069.
Formula
Empirical: a(n) = 3*a(n-1) + a(n-2) - 6*a(n-3) + 5*a(n-4) - 2*a(n-5) - 2*a(n-6) - a(n-7) for n>9.
Empirical g.f.: x*(1 + x)*(1 - 2*x + 4*x^3 - 8*x^4 + 2*x^5 - x^6 - x^7) / ((1 - x + x^2)*(1 - 2*x - 4*x^2 + 4*x^3 + 3*x^4 + x^5)). - Colin Barker, Feb 12 2019