cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A280064 Number of n X 3 0..1 arrays with no element unequal to a strict majority of its horizontal, vertical and antidiagonal neighbors and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

1, 2, 5, 15, 39, 104, 281, 771, 2122, 5858, 16174, 44694, 123510, 341403, 943694, 2608709, 7211359, 19935055, 55108220, 152341402, 421132682, 1164181573, 3218268552, 8896600238, 24593808939, 67987267220, 187944382019, 519554527901
Offset: 1

Views

Author

R. H. Hardin, Dec 25 2016

Keywords

Examples

			Some solutions for n=4:
..0..0..0. .0..1..1. .0..1..1. .0..0..0. .0..0..0. .0..0..0. .0..0..0
..0..0..0. .0..1..1. .0..1..1. .0..0..0. .0..0..0. .1..1..0. .0..0..0
..0..1..1. .0..1..1. .0..0..1. .0..0..1. .1..1..0. .1..1..0. .1..1..1
..1..1..1. .0..0..0. .0..0..1. .0..1..1. .1..1..0. .1..0..0. .1..1..1
		

Crossrefs

Column 3 of A280069.

Formula

Empirical: a(n) = 3*a(n-1) + a(n-2) - 6*a(n-3) + 5*a(n-4) - 2*a(n-5) - 2*a(n-6) - a(n-7) for n>9.
Empirical g.f.: x*(1 + x)*(1 - 2*x + 4*x^3 - 8*x^4 + 2*x^5 - x^6 - x^7) / ((1 - x + x^2)*(1 - 2*x - 4*x^2 + 4*x^3 + 3*x^4 + x^5)). - Colin Barker, Feb 12 2019

A280065 Number of nX4 0..1 arrays with no element unequal to a strict majority of its horizontal, vertical and antidiagonal neighbors and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

2, 4, 15, 52, 170, 603, 2157, 7777, 28195, 102429, 372430, 1355019, 4930977, 17946466, 65320396, 237756751, 865411414, 3150039989, 11465974491, 41735611962, 151915810407, 552967220870, 2012778077066, 7326430841669
Offset: 1

Views

Author

R. H. Hardin, Dec 25 2016

Keywords

Comments

Column 4 of A280069.

Examples

			Some solutions for n=4
..0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..1..1. .0..0..0..0
..0..0..0..1. .0..0..0..1. .0..0..0..1. .0..0..1..1. .0..0..0..1
..0..1..1..1. .1..1..1..1. .0..0..1..1. .0..1..1..1. .0..0..1..1
..1..1..1..1. .1..1..1..1. .0..1..1..1. .1..1..1..1. .0..0..1..1
		

Crossrefs

Cf. A280069.

Formula

Empirical: a(n) = 4*a(n-1) +4*a(n-2) -21*a(n-3) -4*a(n-4) +34*a(n-5) +25*a(n-6) -37*a(n-7) -82*a(n-8) +44*a(n-9) +36*a(n-10) +6*a(n-11) -a(n-12) -5*a(n-13) -3*a(n-14) +a(n-15) for n>18

A280066 Number of nX5 0..1 arrays with no element unequal to a strict majority of its horizontal, vertical and antidiagonal neighbors and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

3, 9, 39, 170, 790, 3729, 17468, 82769, 394904, 1890877, 9080800, 43650638, 210047292, 1011165147, 4869719373, 23456281889, 113000007399, 544411868911, 2623011742357, 12638188505237, 60894518951302, 293410920660702
Offset: 1

Views

Author

R. H. Hardin, Dec 25 2016

Keywords

Comments

Column 5 of A280069.

Examples

			Some solutions for n=4
..0..1..1..1..1. .0..0..0..0..0. .0..1..1..0..0. .0..0..1..1..1
..0..1..1..1..1. .1..1..0..0..0. .0..1..1..0..0. .0..0..1..1..0
..0..0..1..1..0. .1..1..0..0..0. .0..0..1..1..1. .0..0..0..0..0
..0..0..1..0..0. .1..1..1..1..1. .0..0..1..1..1. .0..0..0..0..0
		

Crossrefs

Cf. A280069.

Formula

Empirical: a(n) = 8*a(n-1) -4*a(n-2) -97*a(n-3) +176*a(n-4) +339*a(n-5) -1073*a(n-6) -47*a(n-7) +3377*a(n-8) -3342*a(n-9) -7621*a(n-10) +13813*a(n-11) +10465*a(n-12) -31408*a(n-13) -5811*a(n-14) +90585*a(n-15) -69504*a(n-16) -167596*a(n-17) +292370*a(n-18) -85078*a(n-19) -228536*a(n-20) +394124*a(n-21) -113838*a(n-22) -192578*a(n-23) +250274*a(n-24) -199426*a(n-25) -58314*a(n-26) +185492*a(n-27) -136476*a(n-28) +48376*a(n-29) +64368*a(n-30) -69640*a(n-31) +27472*a(n-32) +2400*a(n-33) -15956*a(n-34) +6480*a(n-35) for n>40

A280067 Number of nX6 0..1 arrays with no element unequal to a strict majority of its horizontal, vertical and antidiagonal neighbors and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

5, 19, 104, 603, 3729, 23564, 145485, 915505, 5786757, 36671797, 233383456, 1487001440, 9487581421, 60571549809, 386914206005, 2472215283933, 15799867880212, 100989585485103, 645564463469368, 4126929495349807
Offset: 1

Views

Author

R. H. Hardin, Dec 25 2016

Keywords

Comments

Column 6 of A280069.

Examples

			Some solutions for n=4
..0..0..1..1..1..1. .0..1..1..0..0..0. .0..0..0..0..1..1. .0..0..0..0..0..1
..0..1..1..1..1..1. .0..1..1..0..0..0. .0..0..0..1..1..1. .0..0..0..0..1..1
..1..1..0..0..1..1. .0..0..1..1..0..0. .1..1..1..1..1..0. .1..1..0..0..1..1
..1..0..0..0..0..0. .0..0..1..1..1..1. .1..1..1..1..0..0. .1..1..0..0..1..1
		

Crossrefs

Cf. A280069.

Formula

Empirical recurrence of order 87 (see link above)

A280068 Number of nX7 0..1 arrays with no element unequal to a strict majority of its horizontal, vertical and antidiagonal neighbors and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

8, 41, 281, 2157, 17468, 145485, 1188839, 9934415, 83159859, 698377561, 5887978374, 49721599049, 420447933252, 3558743911515, 30138816610398, 255354080222866, 2164080579680386, 18343719103540772, 155508281837894034
Offset: 1

Views

Author

R. H. Hardin, Dec 25 2016

Keywords

Comments

Column 7 of A280069.

Examples

			Some solutions for n=4
..0..0..0..0..0..0..1. .0..0..1..1..0..1..1. .0..0..0..0..0..0..0
..0..0..0..0..0..1..1. .0..0..1..0..0..1..1. .0..0..0..0..0..0..0
..0..0..0..1..1..1..0. .0..1..1..0..0..0..0. .0..0..0..1..1..0..0
..0..0..1..1..1..0..0. .1..1..0..0..0..0..0. .0..0..1..1..1..0..0
		

Crossrefs

Cf. A280069.

A280063 Number of n X n 0..1 arrays with no element unequal to a strict majority of its horizontal, vertical and antidiagonal neighbors and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

1, 1, 5, 52, 790, 23564, 1188839, 110266512, 18113056960, 5286615353516, 2755789744812452
Offset: 1

Views

Author

R. H. Hardin, Dec 25 2016

Keywords

Comments

Diagonal of A280069.

Examples

			Some solutions for n=4
..0..0..1..1. .0..0..0..1. .0..0..1..1. .0..0..0..1. .0..0..0..0
..0..0..1..1. .0..0..1..1. .0..0..1..1. .0..0..1..1. .0..0..0..0
..0..0..0..0. .0..0..1..1. .0..0..1..1. .1..1..0..0. .1..1..1..0
..0..0..0..0. .0..0..0..0. .0..0..1..1. .1..0..0..0. .1..1..1..0
		

Crossrefs

Cf. A280069.
Showing 1-6 of 6 results.